Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import cv2 | |
import spaces | |
model_id = "llava-hf/llava-interleave-qwen-7b-hf" | |
processor = LlavaProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16) | |
model.to("cuda") | |
def sample_frames(video_file, num_frames) : | |
video = cv2.VideoCapture(video_file) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
interval = total_frames // num_frames | |
frames = [] | |
for i in range(total_frames): | |
ret, frame = video.read() | |
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if not ret: | |
continue | |
if i % interval == 0: | |
frames.append(pil_img) | |
video.release() | |
return frames | |
def bot_streaming(message, history): | |
if message["files"]: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0])==tuple: | |
image = hist[0][0] | |
txt = message["text"] | |
img = message["files"] | |
ext_buffer =f"'user\ntext': '{txt}', 'files': '{img}' assistant" | |
if image is None: | |
gr.Error("You need to upload an image or video for LLaVA to work.") | |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg") | |
image_extensions = Image.registered_extensions() | |
image_extensions = tuple([ex for ex, f in image_extensions.items()]) | |
if image.endswith(video_extensions): | |
image = sample_frames(image, 12) | |
image_tokens = "<image>" * 13 | |
prompt = f"<|im_start|>user {image_tokens}\n{message}<|im_end|><|im_start|>assistant" | |
elif image.endswith(image_extensions): | |
image = Image.open(image).convert("RGB") | |
prompt = f"<|im_start|>user <image>\n{message}<|im_end|><|im_start|>assistant" | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
print(buffer) | |
generated_text_without_prompt = buffer[len(ext_buffer):] | |
time.sleep(0.01) | |
yield generated_text_without_prompt | |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Interleave", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files":["./baklava.png"]}, | |
{"text": "What type of cats are these?", "files":["./cats.mp4"]}], | |
description="Try [LLaVA Interleave](https://huggingface.co/docs/transformers/main/en/model_doc/llava) in this demo (more specifically, the [Qwen-1.5-7B variant](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", multimodal=True) | |
demo.launch(debug=True) |