Spaces:
Running
on
Zero
Running
on
Zero
Create configuration_nllb_clip.py
Browse files- configuration_nllb_clip.py +273 -0
configuration_nllb_clip.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" NLLB-CLIP model configuration"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
from collections import OrderedDict
|
5 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
6 |
+
|
7 |
+
if TYPE_CHECKING:
|
8 |
+
from transformers.processing_utils import ProcessorMixin
|
9 |
+
from transformers.utils import TensorType
|
10 |
+
|
11 |
+
from transformers import CLIPVisionConfig
|
12 |
+
from transformers.configuration_utils import PretrainedConfig
|
13 |
+
from transformers.onnx import OnnxConfig
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class NLLBCLIPTextConfig(PretrainedConfig):
|
20 |
+
model_type = "clip_text_model"
|
21 |
+
attribute_map = {
|
22 |
+
"num_attention_heads": "encoder_attention_heads",
|
23 |
+
"hidden_size": "d_model",
|
24 |
+
}
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
vocab_size=128112,
|
29 |
+
max_position_embeddings=1024,
|
30 |
+
encoder_layers=12,
|
31 |
+
encoder_ffn_dim=4096,
|
32 |
+
encoder_attention_heads=16,
|
33 |
+
encoder_layerdrop=0.05,
|
34 |
+
use_cache=True,
|
35 |
+
activation_function="relu",
|
36 |
+
d_model=1024,
|
37 |
+
dropout=0.1,
|
38 |
+
attention_dropout=0.1,
|
39 |
+
activation_dropout=0.0,
|
40 |
+
init_std=0.02,
|
41 |
+
scale_embedding=True,
|
42 |
+
pad_token_id=1,
|
43 |
+
bos_token_id=0,
|
44 |
+
eos_token_id=2,
|
45 |
+
layer_norm_eps=1e-5,
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
self.vocab_size = vocab_size
|
49 |
+
self.max_position_embeddings = max_position_embeddings
|
50 |
+
self.d_model = d_model
|
51 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
52 |
+
self.encoder_layers = encoder_layers
|
53 |
+
self.encoder_attention_heads = encoder_attention_heads
|
54 |
+
self.dropout = dropout
|
55 |
+
self.attention_dropout = attention_dropout
|
56 |
+
self.activation_dropout = activation_dropout
|
57 |
+
self.activation_function = activation_function
|
58 |
+
self.init_std = init_std
|
59 |
+
self.encoder_layerdrop = encoder_layerdrop
|
60 |
+
self.use_cache = use_cache
|
61 |
+
self.num_hidden_layers = encoder_layers
|
62 |
+
self.scale_embedding = scale_embedding
|
63 |
+
self.layer_norm_eps = layer_norm_eps
|
64 |
+
|
65 |
+
super().__init__(
|
66 |
+
pad_token_id=pad_token_id,
|
67 |
+
bos_token_id=bos_token_id,
|
68 |
+
eos_token_id=eos_token_id,
|
69 |
+
**kwargs,
|
70 |
+
)
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def from_pretrained(
|
74 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
75 |
+
) -> "PretrainedConfig":
|
76 |
+
config_dict, kwargs = cls.get_config_dict(
|
77 |
+
pretrained_model_name_or_path, **kwargs
|
78 |
+
)
|
79 |
+
|
80 |
+
# get the vision config dict if we are loading from CLIPConfig
|
81 |
+
if config_dict.get("model_type") == "clip":
|
82 |
+
config_dict = config_dict["text_config"]
|
83 |
+
|
84 |
+
if (
|
85 |
+
"model_type" in config_dict
|
86 |
+
and hasattr(cls, "model_type")
|
87 |
+
and config_dict["model_type"] != cls.model_type
|
88 |
+
):
|
89 |
+
logger.warning(
|
90 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
91 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
92 |
+
)
|
93 |
+
|
94 |
+
return cls.from_dict(config_dict, **kwargs)
|
95 |
+
|
96 |
+
|
97 |
+
class NLLBCLIPConfig(PretrainedConfig):
|
98 |
+
model_type = "clip"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
text_config=None,
|
103 |
+
vision_config=None,
|
104 |
+
projection_dim=512,
|
105 |
+
logit_scale_init_value=2.6592,
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
109 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
110 |
+
# of confusion!).
|
111 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
112 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
113 |
+
|
114 |
+
super().__init__(**kwargs)
|
115 |
+
|
116 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
117 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
118 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
119 |
+
if text_config_dict is not None:
|
120 |
+
if text_config is None:
|
121 |
+
text_config = {}
|
122 |
+
|
123 |
+
# This is the complete result when using `text_config_dict`.
|
124 |
+
_text_config_dict = NLLBCLIPTextConfig(**text_config_dict).to_dict()
|
125 |
+
|
126 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
127 |
+
for key, value in _text_config_dict.items():
|
128 |
+
if (
|
129 |
+
key in text_config
|
130 |
+
and value != text_config[key]
|
131 |
+
and key not in ["transformers_version"]
|
132 |
+
):
|
133 |
+
# If specified in `text_config_dict`
|
134 |
+
if key in text_config_dict:
|
135 |
+
message = (
|
136 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
137 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
138 |
+
)
|
139 |
+
# If inferred from default argument values (just to be super careful)
|
140 |
+
else:
|
141 |
+
message = (
|
142 |
+
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
|
143 |
+
f'value `text_config["{key}"]` will be overriden.'
|
144 |
+
)
|
145 |
+
logger.warning(message)
|
146 |
+
|
147 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
148 |
+
text_config.update(_text_config_dict)
|
149 |
+
|
150 |
+
if vision_config_dict is not None:
|
151 |
+
if vision_config is None:
|
152 |
+
vision_config = {}
|
153 |
+
|
154 |
+
# This is the complete result when using `vision_config_dict`.
|
155 |
+
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
|
156 |
+
# convert keys to string instead of integer
|
157 |
+
if "id2label" in _vision_config_dict:
|
158 |
+
_vision_config_dict["id2label"] = {
|
159 |
+
str(key): value
|
160 |
+
for key, value in _vision_config_dict["id2label"].items()
|
161 |
+
}
|
162 |
+
|
163 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
164 |
+
for key, value in _vision_config_dict.items():
|
165 |
+
if (
|
166 |
+
key in vision_config
|
167 |
+
and value != vision_config[key]
|
168 |
+
and key not in ["transformers_version"]
|
169 |
+
):
|
170 |
+
# If specified in `vision_config_dict`
|
171 |
+
if key in vision_config_dict:
|
172 |
+
message = (
|
173 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
174 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
175 |
+
)
|
176 |
+
# If inferred from default argument values (just to be super careful)
|
177 |
+
else:
|
178 |
+
message = (
|
179 |
+
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
|
180 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
181 |
+
)
|
182 |
+
logger.warning(message)
|
183 |
+
|
184 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
185 |
+
vision_config.update(_vision_config_dict)
|
186 |
+
|
187 |
+
if text_config is None:
|
188 |
+
text_config = {}
|
189 |
+
logger.info(
|
190 |
+
"`text_config` is `None`. Initializing the `NLLBCLIPTextConfig` with default values."
|
191 |
+
)
|
192 |
+
|
193 |
+
if vision_config is None:
|
194 |
+
vision_config = {}
|
195 |
+
logger.info(
|
196 |
+
"`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values."
|
197 |
+
)
|
198 |
+
|
199 |
+
self.text_config = NLLBCLIPTextConfig(**text_config)
|
200 |
+
self.vision_config = CLIPVisionConfig(**vision_config)
|
201 |
+
|
202 |
+
self.projection_dim = projection_dim
|
203 |
+
self.logit_scale_init_value = logit_scale_init_value
|
204 |
+
self.initializer_factor = 1.0
|
205 |
+
|
206 |
+
@classmethod
|
207 |
+
def from_text_vision_configs(
|
208 |
+
cls, text_config: NLLBCLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs
|
209 |
+
):
|
210 |
+
r"""
|
211 |
+
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
212 |
+
configuration.
|
213 |
+
Returns:
|
214 |
+
[`CLIPConfig`]: An instance of a configuration object
|
215 |
+
"""
|
216 |
+
|
217 |
+
return cls(
|
218 |
+
text_config=text_config.to_dict(),
|
219 |
+
vision_config=vision_config.to_dict(),
|
220 |
+
**kwargs,
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
class CLIPOnnxConfig(OnnxConfig):
|
225 |
+
@property
|
226 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
227 |
+
return OrderedDict(
|
228 |
+
[
|
229 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
230 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
231 |
+
(
|
232 |
+
"pixel_values",
|
233 |
+
{0: "batch", 1: "num_channels", 2: "height", 3: "width"},
|
234 |
+
),
|
235 |
+
]
|
236 |
+
)
|
237 |
+
|
238 |
+
@property
|
239 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
240 |
+
return OrderedDict(
|
241 |
+
[
|
242 |
+
("logits_per_image", {0: "batch"}),
|
243 |
+
("logits_per_text", {0: "batch"}),
|
244 |
+
("text_embeds", {0: "batch"}),
|
245 |
+
("image_embeds", {0: "batch"}),
|
246 |
+
]
|
247 |
+
)
|
248 |
+
|
249 |
+
@property
|
250 |
+
def atol_for_validation(self) -> float:
|
251 |
+
return 1e-4
|
252 |
+
|
253 |
+
def generate_dummy_inputs(
|
254 |
+
self,
|
255 |
+
processor: "ProcessorMixin",
|
256 |
+
batch_size: int = -1,
|
257 |
+
seq_length: int = -1,
|
258 |
+
framework: Optional["TensorType"] = None,
|
259 |
+
) -> Mapping[str, Any]:
|
260 |
+
text_input_dict = super().generate_dummy_inputs(
|
261 |
+
processor.tokenizer,
|
262 |
+
batch_size=batch_size,
|
263 |
+
seq_length=seq_length,
|
264 |
+
framework=framework,
|
265 |
+
)
|
266 |
+
image_input_dict = super().generate_dummy_inputs(
|
267 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
268 |
+
)
|
269 |
+
return {**text_input_dict, **image_input_dict}
|
270 |
+
|
271 |
+
@property
|
272 |
+
def default_onnx_opset(self) -> int:
|
273 |
+
return 14
|