File size: 4,937 Bytes
3d2ccf5
 
 
 
cf322df
3d2ccf5
 
050bcdd
 
 
39fa1f9
 
 
3252678
3d2ccf5
1b8a80e
20e4b68
19d6ff0
 
 
 
 
 
 
e752a6d
 
19d6ff0
 
 
 
 
 
e752a6d
19d6ff0
 
3d2ccf5
0b96e65
296d90c
518d051
296d90c
c52039d
51739ac
850e742
 
 
e413986
 
 
51739ac
e413986
3d2ccf5
 
 
 
1b8a80e
3d2ccf5
e413986
19d6ff0
c52039d
e413986
19d6ff0
e413986
7ec07f8
e413986
 
7ec07f8
e413986
 
 
 
 
306b3a0
7ec07f8
e413986
 
92a0f76
 
96af6c4
e413986
 
e752a6d
e413986
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import requests
import os
from streamlit_chat import message
import random

@st.cache
def query(payload):
    api_token = os.getenv("api_token")
    model_id = "deepset/roberta-base-squad2"
    headers = {"Authorization": f"Bearer {api_token}"}
    API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json(), response


context = "To extract information from documents, use sentence similarity task. To do sentiment analysis from tweets, use text classification task. To detect masks from images, use object detection task. To extract name or address from documents use token classification task. To extract name or address from invoices, use token classification task. To build voice enabled applications, you can use automatic speech recognition task. You can retrieve information from documents using sentence similarity task. You can summarize papers using summarization task. You can convert text to speech using text-to-speech task. To detect language spoken in an audio, you can use audio classification task. To detect emotion in an audio, you can use audio classification task. To detect commands in an audio, you can use audio classification task. To decompose sounds in a recording, use audio-to-audio task. To answer questions from a document, you can use question answering task. To answer FAQs from your customers, you can use question answering task. To see if a text is grammatically correct, you can use text classification task. To augment your training data, you can use text classification task. To detect pedestrians, you can use object detection task."


link_dict = {
    "audio-to-audio": "https://huggingface.co/tasks/audio-to-audio",
    "audio classification": "https://huggingface.co/tasks/audio-classification",
    "automatic speech recognition": "https://huggingface.co/tasks/automatic-speech-recognition",
    "fill-mask":"https://huggingface.co/tasks/fill-mask",
    "image classification": "https://huggingface.co/tasks/image-classification",
    "image segmentation": "https://huggingface.co/tasks/image-segmentation",
    "question answering":"https://huggingface.co/tasks/question-answering",
    "text-to-speech":"https://huggingface.co/tasks/text-to-speech",
    "sentence similarity": "https://huggingface.co/tasks/sentence-similarity",
    "summarization":"https://huggingface.co/tasks/summarization",
    "text generation": "https://huggingface.co/tasks/text-generation",
    "translation": "https://huggingface.co/tasks/translation",
    "token classification": "https://huggingface.co/tasks/token-classification",
    "object detection": "https://huggingface.co/tasks/object-detection"}
    

message_history = [{"text":"Let's find out the best task for your use case! Tell me about your use case :)", "is_user":False}]

st.subheader("If you don't know how to build your machine learning product for your use case, Taskmaster is here to help you! πŸͺ„βœ¨")
for msg in message_history:
    message(msg["text"], is_user = msg["is_user"])   # display all the previous message

placeholder = st.empty()  # placeholder for latest message


input = st.text_input("Ask me πŸ€—")
if input:
    message_history.append({"text":input, "is_user" : True})

    data, resp = query(
    {
        "inputs": {
            "question": input,
            "context": context,
        }
    }
    )


    if resp.status_code == 200:
    
        model_answer = data["answer"]
        key_exists = False
        for key in link_dict:
            if key in model_answer:
                key_exists = True
                url = link_dict[key]
                response_templates = [f"I think that {model_answer} is the best task for this 🀩 Check out the page πŸ‘‰πŸΌ {url}", f"I think you should use {model_answer} πŸͺ„ Check it out here πŸ‘‰πŸΌ {url}", f"I think {model_answer} should work for you πŸ€“ Check out the page πŸ‘‰πŸΌ {url}"]
        
                bot_answer = random.choice(response_templates)
                message_history.append({"text":bot_answer, "is_user" : False})
        if key_exists == False:
            fallback_template = ["I didn't get the question 🧐 Could you please ask again? Try 'What should I use for detecting masks in an image?'",
                                     "Hmm, not sure I know the answer, maybe you could ask differently? πŸ€“",
                                     "Sorry, I didn't understand you, maybe you could ask differently? πŸ€“ Try asking 'What should I use to extract name in a document' πŸ€—"]
            bot_answer = random.choice(fallback_template)
            message_history.append({"text":bot_answer, "is_user" : False})
    
    with placeholder.container():
        last_message = message_history[-1]
        if last_message:
            message(last_message["text"], last_message["is_user"])