File size: 5,280 Bytes
3d2ccf5
 
 
 
cf322df
97f5741
b3d2c60
818627e
 
3d2ccf5
5fdd7f8
3d2ccf5
1b8a80e
75e25ba
19d6ff0
 
 
 
 
 
 
e752a6d
 
19d6ff0
 
 
 
 
 
e752a6d
702ffe4
19d6ff0
 
3d2ccf5
b3d2c60
1093800
 
b3d2c60
1093800
 
b3d2c60
 
 
 
 
 
 
 
 
 
2c706e6
b3d2c60
 
 
488b0e4
b87574d
01aa20e
488b0e4
 
b3d2c60
518d051
51739ac
3f0d99a
 
 
 
 
 
850e742
 
e413986
 
3f0d99a
b3d2c60
3f0d99a
51739ac
43d8f7d
19d6ff0
6009075
 
 
 
 
8080ad9
19d6ff0
6009075
3f0d99a
 
6009075
 
 
 
 
3f0d99a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
import requests
import os
from streamlit_chat import message
import random
from sentence_transformers import SentenceTransformer, util
import nltk
import numpy as np
import pandas as pd

nltk.download("punkt")


context = "To extract information from documents, use sentence similarity task. To classify sentiments, use text classification task. To do sentiment analysis, use text classification task. To detect masks from images, use object detection task. To extract name or address from documents use token classification task. To extract name or address from invoices, use token classification task. To build voice enabled applications, you can use automatic speech recognition task. You can retrieve information from documents using sentence similarity task. You can summarize papers using summarization task. You can convert text to speech using text-to-speech task. To detect language spoken in an audio, you can use audio classification task. To detect emotion in an audio, you can use audio classification task. To detect commands in an audio, you can use audio classification task. To decompose sounds in a recording, use audio-to-audio task. To answer questions from a document, you can use question answering task. To answer FAQs from your customers, you can use question answering task. To see if a text is grammatically correct, you can use text classification task. To augment your training data, you can use text classification task. To detect pedestrians, you can use object detection task."


link_dict = {
    "audio-to-audio": "https://huggingface.co/tasks/audio-to-audio",
    "audio classification": "https://huggingface.co/tasks/audio-classification",
    "automatic speech recognition": "https://huggingface.co/tasks/automatic-speech-recognition",
    "fill-mask":"https://huggingface.co/tasks/fill-mask",
    "image classification": "https://huggingface.co/tasks/image-classification",
    "image segmentation": "https://huggingface.co/tasks/image-segmentation",
    "question answering":"https://huggingface.co/tasks/question-answering",
    "text-to-speech":"https://huggingface.co/tasks/text-to-speech",
    "sentence similarity": "https://huggingface.co/tasks/sentence-similarity",
    "summarization":"https://huggingface.co/tasks/summarization",
    "text generation": "https://huggingface.co/tasks/text-generation",
    "translation": "https://huggingface.co/tasks/translation",
    "token classification": "https://huggingface.co/tasks/token-classification",
    "text classification":"https://huggingface.co/tasks/text-classification",
    "object detection": "https://huggingface.co/tasks/object-detection"}
    


model_name = 'sentence-transformers/msmarco-distilbert-base-v4'
max_sequence_length = 512

model = SentenceTransformer(model_name)
model.max_seq_length = max_sequence_length
corpus = []
sentence_count = []

for sent in context.split("."):

    sentences = nltk.tokenize.sent_tokenize(str(sent), language='english')
    sentence_count.append(len(sentences))
    for _,s in enumerate(sentences):
        corpus.append(s)

corpus_embeddings = model.encode(corpus)

def find_sentences(query):
    query_embedding = model.encode(query)
    hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
    hit = hits[0][0]
    corpus_id = hit['corpus_id']
    saved = corpus[corpus_id]
    return saved

st.subheader("If you don't know how to build your machine learning product for your use case, Taskmaster is here to help you! πŸͺ„βœ¨")

message("Let's find out the best task for your use case! Tell me about your use case :)")

#message_history = [{"text":"Let's find out the best task for your use case! Tell me about your use case :)", "is_user":False}]
#for msg in message_history:
#    message(msg["text"], is_user = msg["is_user"]) 
#placeholder = st.empty()  # placeholder for latest message


input = st.text_input("Ask me πŸ€—")
if input:
    message(input, is_user = True)

    #message_history.append({"text":input, "is_user" : True})

    model_answer = find_sentences(input)

    key_exists = False
    for key in link_dict:
        if key in model_answer:
            key_exists = True
            url = link_dict[key]
            response_templates = [f"I think that {key} is the best task for this 🀩 Check out the page πŸ‘‰πŸΌ {url}", f"I think you should use {key} πŸͺ„ Check it out here πŸ‘‰πŸΌ {url}", f"I think {key} should work for you πŸ€“ Check out the page πŸ‘‰πŸΌ {url}"]
    
            bot_answer = random.choice(response_templates)
            message(bot_answer)
            #message_history.append({"text":bot_answer, "is_user" : False})
    if key_exists == False:
        fallback_template = ["I didn't get the question 🧐 Could you please ask again? Try 'What should I use for detecting masks in an image?'",
                                 "Hmm, not sure I know the answer, maybe you could ask differently? πŸ€“",
                                 "Sorry, I didn't understand you, maybe you could ask differently? πŸ€“ Try asking 'What should I use to extract name in a document' πŸ€—"]
        bot_answer = random.choice(fallback_template)
        message(bot_answer)
        #message_history.append({"text":bot_answer, "is_user" : False})