Spaces:
Runtime error
Runtime error
import os | |
import diffusers.utils | |
from diffusers import StableDiffusionPipeline | |
from diffusers import StableDiffusionInpaintPipeline | |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
from ldm.util import instantiate_from_config | |
from ControlNet.cldm.model import create_model, load_state_dict | |
from ControlNet.cldm.ddim_hacked import DDIMSampler | |
# from ControlNet.annotator.canny import CannyDetector | |
# from ControlNet.annotator.mlsd import MLSDdetector | |
# from ControlNet.annotator.hed import HEDdetector, nms | |
# from ControlNet.annotator.openpose import OpenposeDetector | |
# from ControlNet.annotator.uniformer import UniformerDetector | |
# from ControlNet.annotator.midas import MidasDetector | |
from PIL import Image | |
import torch | |
import numpy as np | |
import uuid | |
import einops | |
from pytorch_lightning import seed_everything | |
import cv2 | |
import random | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
def get_new_image_name(org_img_name, func_name="update"): | |
head_tail = os.path.split(org_img_name) | |
head = head_tail[0] | |
tail = head_tail[1] | |
name_split = tail.split('.')[0].split('_') | |
this_new_uuid = str(uuid.uuid4())[0:4] | |
if len(name_split) == 1: | |
most_org_file_name = name_split[0] | |
recent_prev_file_name = name_split[0] | |
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
else: | |
assert len(name_split) == 4 | |
most_org_file_name = name_split[3] | |
recent_prev_file_name = name_split[0] | |
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
return os.path.join(head, new_file_name) | |
class MaskFormer: | |
def __init__(self, device): | |
self.device = device | |
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
def inference(self, image_path, text): | |
threshold = 0.5 | |
min_area = 0.02 | |
padding = 20 | |
original_image = Image.open(image_path) | |
image = original_image.resize((512, 512)) | |
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold | |
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) | |
if area_ratio < min_area: | |
return None | |
true_indices = np.argwhere(mask) | |
mask_array = np.zeros_like(mask, dtype=bool) | |
for idx in true_indices: | |
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
mask_array[padded_slice] = True | |
visual_mask = (mask_array * 255).astype(np.uint8) | |
image_mask = Image.fromarray(visual_mask) | |
return image_mask.resize(image.size) | |
class ImageEditing: | |
def __init__(self, device): | |
print("Initializing StableDiffusionInpaint to %s" % device) | |
self.device = device | |
self.mask_former = MaskFormer(device=self.device) | |
self.inpainting = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",).to(device) | |
def remove_part_of_image(self, input): | |
image_path, to_be_removed_txt = input.split(",") | |
print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}') | |
return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background") | |
def replace_part_of_image(self, input): | |
image_path, to_be_replaced_txt, replace_with_txt = input.split(",") | |
print(f'replace_part_of_image: replace_with_txt {replace_with_txt}') | |
original_image = Image.open(image_path) | |
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) | |
updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
updated_image.save(updated_image_path) | |
return updated_image_path | |
class Pix2Pix: | |
def __init__(self, device): | |
print("Initializing Pix2Pix to %s" % device) | |
self.device = device | |
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device) | |
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
def inference(self, inputs): | |
"""Change style of image.""" | |
print("===>Starting Pix2Pix Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
original_image = Image.open(image_path) | |
image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
image.save(updated_image_path) | |
return updated_image_path | |
class T2I: | |
def __init__(self, device): | |
print("Initializing T2I to %s" % device) | |
self.device = device | |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") | |
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") | |
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) | |
self.pipe.to(device) | |
def inference(self, text): | |
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") | |
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] | |
print(f'{text} refined to {refined_text}') | |
image = self.pipe(refined_text).images[0] | |
image.save(image_filename) | |
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") | |
return image_filename | |
class ImageCaptioning: | |
def __init__(self, device): | |
print("Initializing ImageCaptioning to %s" % device) | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) | |
def inference(self, image_path): | |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) | |
out = self.model.generate(**inputs) | |
captions = self.processor.decode(out[0], skip_special_tokens=True) | |
return captions | |
class image2canny_new: | |
def __init__(self): | |
print("Direct detect canny.") | |
self.low_threshold = 100 | |
self.high_threshold = 200 | |
def inference(self, inputs): | |
print("===>Starting image2canny Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
canny = canny[:, :, None] | |
canny = np.concatenate([canny, canny, canny], axis=2) | |
canny = 255 - canny | |
canny = Image.fromarray(canny) | |
updated_image_path = get_new_image_name(inputs, func_name="edge") | |
canny.save(updated_image_path) | |
return updated_image_path | |
class canny2image_new: | |
def __init__(self, device): | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-canny" | |
) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.image_resolution = 512 | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting canny2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
image = 255 - image | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
img = Image.fromarray(img) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = prompt + ', ' + self.a_prompt | |
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
image.save(updated_image_path) | |
return updated_image_path | |
# class image2canny: | |
# def __init__(self): | |
# print("Direct detect canny.") | |
# self.detector = CannyDetector() | |
# self.low_thresh = 100 | |
# self.high_thresh = 200 | |
# | |
# def inference(self, inputs): | |
# print("===>Starting image2canny Inference") | |
# image = Image.open(inputs) | |
# image = np.array(image) | |
# canny = self.detector(image, self.low_thresh, self.high_thresh) | |
# canny = 255 - canny | |
# image = Image.fromarray(canny) | |
# updated_image_path = get_new_image_name(inputs, func_name="edge") | |
# image.save(updated_image_path) | |
# return updated_image_path | |
# | |
# class canny2image: | |
# def __init__(self, device): | |
# print("Initialize the canny2image model.") | |
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu')) | |
# self.model = model.to(device) | |
# self.device = device | |
# self.ddim_sampler = DDIMSampler(self.model) | |
# self.ddim_steps = 20 | |
# self.image_resolution = 512 | |
# self.num_samples = 1 | |
# self.save_memory = False | |
# self.strength = 1.0 | |
# self.guess_mode = False | |
# self.scale = 9.0 | |
# self.seed = -1 | |
# self.a_prompt = 'best quality, extremely detailed' | |
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
# | |
# def inference(self, inputs): | |
# print("===>Starting canny2image Inference") | |
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
# image = Image.open(image_path) | |
# image = np.array(image) | |
# image = 255 - image | |
# prompt = instruct_text | |
# img = resize_image(HWC3(image), self.image_resolution) | |
# H, W, C = img.shape | |
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
# control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
# control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
# self.seed = random.randint(0, 65535) | |
# seed_everything(self.seed) | |
# if self.save_memory: | |
# self.model.low_vram_shift(is_diffusing=False) | |
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
# shape = (4, H // 8, W // 8) | |
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
# if self.save_memory: | |
# self.model.low_vram_shift(is_diffusing=False) | |
# x_samples = self.model.decode_first_stage(samples) | |
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
# updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
# real_image = Image.fromarray(x_samples[0]) # get default the index0 image | |
# real_image.save(updated_image_path) | |
# return updated_image_path | |
class image2line_new: | |
def __init__(self): | |
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
self.value_thresh = 0.1 | |
self.dis_thresh = 0.1 | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2line Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
mlsd = self.detector(resize_image(image, self.resolution), thr_v=self.value_thresh, thr_d=self.dis_thresh) | |
mlsd = np.array(mlsd) | |
mlsd = 255 - mlsd | |
mlsd = Image.fromarray(mlsd) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
mlsd.save(updated_image_path) | |
return updated_image_path | |
class line2image_new: | |
def __init__(self, device): | |
print("Initialize the line2image model...") | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-mlsd" | |
) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.image_resolution = 512 | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting line2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
image = 255 - image | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
img = Image.fromarray(img) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = prompt + ', ' + self.a_prompt | |
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
image.save(updated_image_path) | |
return updated_image_path | |
class image2line: | |
def __init__(self): | |
print("Direct detect straight line...") | |
self.detector = MLSDdetector() | |
self.value_thresh = 0.1 | |
self.dis_thresh = 0.1 | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2hough Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) | |
image = Image.fromarray(hough) | |
image.save(updated_image_path) | |
return updated_image_path | |
class line2image: | |
def __init__(self, device): | |
print("Initialize the line2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting line2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
image = 255 - image | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\ | |
cpu().numpy().clip(0,255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2hed: | |
def __init__(self): | |
print("Direct detect soft HED boundary...") | |
self.detector = HEDdetector() | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2hed Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
hed = self.detector(resize_image(image, self.resolution)) | |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
image = Image.fromarray(hed) | |
image.save(updated_image_path) | |
return updated_image_path | |
class hed2image: | |
def __init__(self, device): | |
print("Initialize the hed2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting hed2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2scribble: | |
def __init__(self): | |
print("Direct detect scribble.") | |
self.detector = HEDdetector() | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2scribble Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
detected_map = self.detector(resize_image(image, self.resolution)) | |
detected_map = HWC3(detected_map) | |
image = resize_image(image, self.resolution) | |
H, W, C = image.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
detected_map = nms(detected_map, 127, 3.0) | |
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
detected_map[detected_map > 4] = 255 | |
detected_map[detected_map < 255] = 0 | |
detected_map = 255 - detected_map | |
updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
image = Image.fromarray(detected_map) | |
image.save(updated_image_path) | |
return updated_image_path | |
class scribble2image: | |
def __init__(self, device): | |
print("Initialize the scribble2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting scribble2image Inference") | |
print(f'sketch device {self.device}') | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
image = 255 - image | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2pose: | |
def __init__(self): | |
print("Direct human pose.") | |
self.detector = OpenposeDetector() | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2pose Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
detected_map, _ = self.detector(resize_image(image, self.resolution)) | |
detected_map = HWC3(detected_map) | |
image = resize_image(image, self.resolution) | |
H, W, C = image.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
image = Image.fromarray(detected_map) | |
image.save(updated_image_path) | |
return updated_image_path | |
class pose2image: | |
def __init__(self, device): | |
print("Initialize the pose2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting pose2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2seg: | |
def __init__(self): | |
print("Direct segmentations.") | |
self.detector = UniformerDetector() | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2seg Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
detected_map = self.detector(resize_image(image, self.resolution)) | |
detected_map = HWC3(detected_map) | |
image = resize_image(image, self.resolution) | |
H, W, C = image.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
updated_image_path = get_new_image_name(inputs, func_name="segmentation") | |
image = Image.fromarray(detected_map) | |
image.save(updated_image_path) | |
return updated_image_path | |
class seg2image: | |
def __init__(self, device): | |
print("Initialize the seg2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting seg2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2depth: | |
def __init__(self): | |
print("Direct depth estimation.") | |
self.detector = MidasDetector() | |
self.resolution = 512 | |
def inference(self, inputs): | |
print("===>Starting image2depth Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
detected_map, _ = self.detector(resize_image(image, self.resolution)) | |
detected_map = HWC3(detected_map) | |
image = resize_image(image, self.resolution) | |
H, W, C = image.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
updated_image_path = get_new_image_name(inputs, func_name="depth") | |
image = Image.fromarray(detected_map) | |
image.save(updated_image_path) | |
return updated_image_path | |
class depth2image: | |
def __init__(self, device): | |
print("Initialize depth2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting depth2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
img = resize_image(HWC3(image), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class image2normal: | |
def __init__(self): | |
print("Direct normal estimation.") | |
self.detector = MidasDetector() | |
self.resolution = 512 | |
self.bg_threshold = 0.4 | |
def inference(self, inputs): | |
print("===>Starting image2 normal Inference") | |
image = Image.open(inputs) | |
image = np.array(image) | |
image = HWC3(image) | |
_, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold) | |
detected_map = HWC3(detected_map) | |
image = resize_image(image, self.resolution) | |
H, W, C = image.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
image = Image.fromarray(detected_map) | |
image.save(updated_image_path) | |
return updated_image_path | |
class normal2image: | |
def __init__(self, device): | |
print("Initialize normal2image model...") | |
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) | |
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu')) | |
self.model = model.to(device) | |
self.device = device | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.ddim_steps = 20 | |
self.image_resolution = 512 | |
self.num_samples = 1 | |
self.save_memory = False | |
self.strength = 1.0 | |
self.guess_mode = False | |
self.scale = 9.0 | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
print("===>Starting normal2image Inference") | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
image = np.array(image) | |
prompt = instruct_text | |
img = image[:, :, ::-1].copy() | |
img = resize_image(HWC3(img), self.image_resolution) | |
H, W, C = img.shape | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 | |
control = torch.stack([control for _ in range(self.num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} | |
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} | |
shape = (4, H // 8, W // 8) | |
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) | |
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) | |
if self.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
real_image = Image.fromarray(x_samples[0]) # default the index0 image | |
real_image.save(updated_image_path) | |
return updated_image_path | |
class BLIPVQA: | |
def __init__(self, device): | |
print("Initializing BLIP VQA to %s" % device) | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device) | |
def get_answer_from_question_and_image(self, inputs): | |
image_path, question = inputs.split(",") | |
raw_image = Image.open(image_path).convert('RGB') | |
print(F'BLIPVQA :question :{question}') | |
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device) | |
out = self.model.generate(**inputs) | |
answer = self.processor.decode(out[0], skip_special_tokens=True) | |
return answer |