Spaces:
Runtime error
Runtime error
File size: 19,196 Bytes
0ab65f4 42a7376 4e0d86a 8e83d53 0ab65f4 cc188fd 4e0d86a 0ab65f4 4e0d86a 0ab65f4 4e0d86a ede13f0 4e0d86a 42a7376 ede13f0 4e0d86a 8e83d53 2a45a89 8e83d53 0ab65f4 42a7376 0ab65f4 973cb5f 0ab65f4 973cb5f 0ab65f4 42a7376 0ab65f4 42a7376 0ab65f4 973cb5f 0ab65f4 973cb5f fa1d9f4 42a7376 fa1d9f4 0ab65f4 fa1d9f4 42a7376 0ab65f4 fa1d9f4 0ab65f4 406d117 fa1d9f4 42a7376 fa1d9f4 42a7376 406d117 42a7376 0ab65f4 42a7376 0ab65f4 4e0d86a 0ab65f4 42a7376 4e0d86a 8e83d53 0ab65f4 42a7376 cc188fd b049394 42a7376 27bbb6d 8e83d53 4e0d86a 27bbb6d 4e0d86a 8c14529 4e0d86a 42a7376 4e0d86a 27bbb6d 4e0d86a 8c14529 4e0d86a 8c14529 4e0d86a 27bbb6d 4e0d86a 42a7376 4e0d86a 8c14529 4e0d86a 8c14529 4e0d86a 8c14529 4e0d86a d06f7c5 4e0d86a d06f7c5 42a7376 d06f7c5 4e0d86a d06f7c5 4e0d86a d06f7c5 4e0d86a 0ab65f4 42a7376 cc188fd 42a7376 cc188fd b049394 42a7376 0ab65f4 8e83d53 0ab65f4 d06f7c5 0ab65f4 d06f7c5 0ab65f4 8e83d53 0ab65f4 d06f7c5 42a7376 d06f7c5 0ab65f4 d06f7c5 0ab65f4 8e83d53 0ab65f4 d06f7c5 4e0d86a 50be408 42a7376 50be408 4e0d86a ed7a0b5 4e0d86a 42a7376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import json
import math
import subprocess
import tempfile
from pathlib import Path
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
Tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, DATA_PATH
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
raw_data, original_df = get_leaderboard_df(DATA_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
def export_csv(df):
csv_filename = Path(tempfile._get_default_tempdir()) / f"scandeval_leaderboard_{next(tempfile._get_candidate_names())}.csv"
df = df.copy()
df[AutoEvalColumn.model.name] = df[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3])
df.to_csv(csv_filename)
return str(csv_filename)
def plot_stats(data_path, plotting_library="plotly", columns=None, table=None):
plots = {}
files = Path(data_path).rglob("*.jsonl")
models = None
if table is not None:
models = table.data[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3]).values.tolist()
if columns is not None:
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks if
task.value.col_name in columns}
else:
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks}
model_names = []
for file in files:
with open(file) as f:
for line in f:
if not line.strip():
continue
line = json.loads(line)
if line["model"] not in model_names:
model_names.append(line["model"])
if models is not None and line["model"] not in models:
continue
metrics = {}
for r in line["results"]["raw"]["test"]:
for k, v in r.items():
key = (line["dataset"], k)
if key not in scores:
continue
val = plots.get(key, {})
val[line["model"]] = val.get(line["model"], []) + [v]
plots[key] = val
metrics.setdefault(k, []).append(v)
# Boxplot
# target_size = math.ceil(len(plots) ** 0.5)
ncols = 2 # target_size if target_size ** 2 == len(plots) else target_size + 1
nrows = len(plots) // 2 + len(plots) % 2 # target_size
if plotting_library == "matplotlib":
import matplotlib.pyplot as plt
if not plots:
return plt.subplots(1, 1)[0]
fig, axs = plt.subplots(nrows, ncols, figsize=(10 * ncols, 10 * nrows))
for i, (k, v) in enumerate(plots.items()):
ax = axs[i // ncols, i % ncols]
vk, vv = zip(*sorted(v.items()))
ax.boxplot(vv, tick_labels=vk)
# Tilt the x-axis labels slightly
for tick in ax.get_xticklabels():
tick.set_rotation(5)
ax.set_title(scores[k])
# fig.show()
fig.tight_layout()
# fig.savefig("results.png")
elif plotting_library == "plotly":
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
if not plots:
return make_subplots(rows=1, cols=1)
colors = dict(zip(model_names, px.colors.qualitative.Dark24))
plot_titles = [scores[k] for k in plots.keys()]
fig = make_subplots(rows=nrows + 1, cols=ncols, subplot_titles=[AutoEvalColumn.average.name] + plot_titles,
specs=[[{"colspan": ncols, "type": "scatterpolar"}] + [None] * (ncols - 1)] + [[{}] * ncols] * nrows,
start_cell="top-left",
vertical_spacing=0.05, horizontal_spacing=0.1)
scatters = {}
# print(fig.print_grid())
for i, (k, v) in enumerate(plots.items()):
vk, vv = zip(*sorted(v.items()))
for j, (label, data) in enumerate(zip(vk, vv)):
# Adding a box trace for each label in the subplot
# print(i // ncols + 2, i % ncols + 1)
fig.add_trace(go.Box(y=data, name=label, boxpoints=False, marker_color=colors[label], showlegend=False, legendgroup=f'group-{label}'),
row=i // ncols + 2, col=i % ncols + 1)
if label not in scatters:
scatters[label] = {}
scatters[label][plot_titles[i]] = np.mean(data) if max(data) < 1 else np.mean(data) / 100.0
for label, data in scatters.items():
fig.add_trace(go.Scatterpolar(
r=tuple(data.values()),
theta=tuple(data.keys()),
fill="toself",
name=label,
line_color=colors[label],
legendgroup=f'group-{label}',
), row=1, col=1)
# Update xaxis properties for each subplot to rotate and center labels
for i in range(nrows * ncols):
fig.update_xaxes(tickangle=-15, row=i // ncols + 2, col=i % ncols + 1)
fig.update_layout(
height=500 * (nrows + 1),
width=700 * ncols,
showlegend=True,
# Prevent plot from getting its top cut off, not showing the titles
# margin keyword has no effect, instead we do:
title_yanchor="top",
)
# fig.show()
else:
raise ValueError(f"Unknown plotting library: {plotting_library}")
return fig
# Searching and filtering
def update_table_and_plot(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
export_filename = export_csv(df)
df = (df.style
.format(precision=2, thousands=",", decimal=".")
.highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:])
.highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=-np.inf)
)
fig = plot_stats(DATA_PATH, columns=df.data.columns, table=df)
return df, fig, export_filename
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
if query.lower().startswith("not "):
return df[~(df[AutoEvalColumn.model.name].str.contains(query[4:], case=False))]
else:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
if _q != "" and not _q.lower().startswith("not "):
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
# filtered_df = filtered_df.drop_duplicates(
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
# )
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name]
)
for _q in queries:
if _q != "" and _q.lower().startswith("not "):
filtered_df = search_table(filtered_df, _q)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
# type_emoji = [t[0] for t in type_query]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row(visible=False):
deleted_models_visibility = gr.Checkbox(
value=False, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320, visible=False):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
cols_to_show = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
leaderboard_table = gr.components.Dataframe(
value=(leaderboard_df[cols_to_show].style
.format(precision=2, thousands=",", decimal=".")
.highlight_max(props="background-color: lightgreen; color: black;", axis=0,
subset=cols_to_show[1:])
.highlight_between(props="color: red;", axis=0,
subset=cols_to_show[1:], left=-np.inf, right=-np.inf)
),
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
leaderboard_file = gr.File(interactive=False, value=export_csv(leaderboard_df[cols_to_show]), visible=True)
with gr.TabItem("📊 LLM Plots", elem_id="llm-benchmark-tab-plot", id=1):
leaderboard_plot = gr.components.Plot(plot_stats(DATA_PATH))
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table_and_plot,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
[
leaderboard_table,
leaderboard_plot,
leaderboard_file,
],
)
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
deleted_models_visibility]:
selector.change(
update_table_and_plot,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
[
leaderboard_table,
leaderboard_plot,
leaderboard_file,
],
queue=True,
)
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
# with gr.Row():
# with gr.Accordion("📙 Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|