File size: 19,196 Bytes
0ab65f4
42a7376
4e0d86a
8e83d53
0ab65f4
 
cc188fd
4e0d86a
0ab65f4
 
4e0d86a
 
 
 
 
 
 
 
 
0ab65f4
4e0d86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ede13f0
 
4e0d86a
 
 
 
 
42a7376
ede13f0
4e0d86a
 
 
8e83d53
 
 
2a45a89
 
8e83d53
 
 
 
0ab65f4
 
 
 
 
 
 
42a7376
 
0ab65f4
 
973cb5f
0ab65f4
 
 
 
 
 
973cb5f
 
0ab65f4
 
 
 
 
 
 
 
 
 
 
 
 
 
42a7376
 
 
0ab65f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a7376
0ab65f4
973cb5f
0ab65f4
 
 
 
 
973cb5f
fa1d9f4
 
 
 
42a7376
fa1d9f4
0ab65f4
 
 
 
 
fa1d9f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a7376
0ab65f4
fa1d9f4
0ab65f4
406d117
fa1d9f4
42a7376
fa1d9f4
42a7376
 
 
406d117
42a7376
0ab65f4
42a7376
0ab65f4
 
 
4e0d86a
0ab65f4
42a7376
 
 
 
 
 
 
4e0d86a
 
 
 
8e83d53
0ab65f4
42a7376
cc188fd
b049394
42a7376
27bbb6d
8e83d53
4e0d86a
 
 
27bbb6d
 
 
 
4e0d86a
 
 
 
8c14529
4e0d86a
 
 
 
42a7376
 
4e0d86a
 
 
 
 
 
 
 
27bbb6d
4e0d86a
 
 
 
 
8c14529
 
 
4e0d86a
8c14529
4e0d86a
27bbb6d
 
 
4e0d86a
 
 
 
42a7376
4e0d86a
 
 
 
 
8c14529
 
4e0d86a
8c14529
 
 
4e0d86a
8c14529
 
 
 
4e0d86a
 
 
 
 
 
 
 
 
d06f7c5
 
4e0d86a
d06f7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a7376
d06f7c5
 
 
 
 
 
4e0d86a
d06f7c5
 
 
 
 
 
4e0d86a
d06f7c5
 
 
 
 
 
4e0d86a
0ab65f4
 
 
 
 
42a7376
cc188fd
42a7376
cc188fd
b049394
42a7376
0ab65f4
 
 
 
 
 
8e83d53
 
0ab65f4
 
d06f7c5
 
 
 
 
 
 
 
 
0ab65f4
d06f7c5
 
 
 
 
 
 
 
 
0ab65f4
 
 
8e83d53
0ab65f4
d06f7c5
42a7376
 
d06f7c5
0ab65f4
d06f7c5
 
 
 
 
 
 
 
 
0ab65f4
 
 
8e83d53
0ab65f4
d06f7c5
 
4e0d86a
50be408
42a7376
50be408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e0d86a
ed7a0b5
 
 
 
 
 
 
 
 
4e0d86a
42a7376
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import json
import math
import subprocess
import tempfile
from pathlib import Path

import numpy as np
import pandas as pd

import gradio as gr
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    Tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, DATA_PATH
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


raw_data, original_df = get_leaderboard_df(DATA_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()



def export_csv(df):
    csv_filename = Path(tempfile._get_default_tempdir()) / f"scandeval_leaderboard_{next(tempfile._get_candidate_names())}.csv"
    df = df.copy()
    df[AutoEvalColumn.model.name] = df[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3])
    df.to_csv(csv_filename)
    return str(csv_filename)
    
    
def plot_stats(data_path, plotting_library="plotly", columns=None, table=None):
    plots = {}
    files = Path(data_path).rglob("*.jsonl")
    models = None
    if table is not None:
        models = table.data[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3]).values.tolist()
    if columns is not None:
        scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks if
                  task.value.col_name in columns}
    else:
        scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks}
    model_names = []
    for file in files:
        with open(file) as f:
            for line in f:
                if not line.strip():
                    continue
                line = json.loads(line)
                if line["model"] not in model_names:
                    model_names.append(line["model"])
                if models is not None and line["model"] not in models:
                    continue
                metrics = {}
                for r in line["results"]["raw"]["test"]:
                    for k, v in r.items():
                        key = (line["dataset"], k)
                        if key not in scores:
                            continue
                        val = plots.get(key, {})
                        val[line["model"]] = val.get(line["model"], []) + [v]
                        plots[key] = val
                        metrics.setdefault(k, []).append(v)

    # Boxplot
    # target_size = math.ceil(len(plots) ** 0.5)
    ncols = 2  # target_size if target_size ** 2 == len(plots) else target_size + 1
    nrows = len(plots) // 2 + len(plots) % 2  # target_size
    if plotting_library == "matplotlib":
        import matplotlib.pyplot as plt
        if not plots:
            return plt.subplots(1, 1)[0]

        fig, axs = plt.subplots(nrows, ncols, figsize=(10 * ncols, 10 * nrows))
        for i, (k, v) in enumerate(plots.items()):
            ax = axs[i // ncols, i % ncols]
            vk, vv = zip(*sorted(v.items()))
            ax.boxplot(vv, tick_labels=vk)
            # Tilt the x-axis labels slightly
            for tick in ax.get_xticklabels():
                tick.set_rotation(5)
            ax.set_title(scores[k])
        # fig.show()
        fig.tight_layout()
        # fig.savefig("results.png")
    elif plotting_library == "plotly":
        import plotly.express as px
        import plotly.graph_objects as go
        from plotly.subplots import make_subplots

        if not plots:
            return make_subplots(rows=1, cols=1)
        colors = dict(zip(model_names, px.colors.qualitative.Dark24))
        plot_titles = [scores[k] for k in plots.keys()]
        fig = make_subplots(rows=nrows + 1, cols=ncols, subplot_titles=[AutoEvalColumn.average.name] + plot_titles,
                            specs=[[{"colspan": ncols, "type": "scatterpolar"}] + [None] * (ncols - 1)] + [[{}] * ncols] * nrows,
                            start_cell="top-left",
                            vertical_spacing=0.05, horizontal_spacing=0.1)
        scatters = {}
        # print(fig.print_grid())
        for i, (k, v) in enumerate(plots.items()):
            vk, vv = zip(*sorted(v.items()))
            for j, (label, data) in enumerate(zip(vk, vv)):
                # Adding a box trace for each label in the subplot
                # print(i // ncols + 2, i % ncols + 1)
                fig.add_trace(go.Box(y=data, name=label, boxpoints=False, marker_color=colors[label], showlegend=False, legendgroup=f'group-{label}'),
                              row=i // ncols + 2, col=i % ncols + 1)
                if label not in scatters:
                    scatters[label] = {}
                scatters[label][plot_titles[i]] = np.mean(data) if max(data) < 1 else np.mean(data) / 100.0
        for label, data in scatters.items():
            fig.add_trace(go.Scatterpolar(
                r=tuple(data.values()),
                theta=tuple(data.keys()),
                fill="toself",
                name=label,
                line_color=colors[label],
                legendgroup=f'group-{label}',
            ), row=1, col=1)
        # Update xaxis properties for each subplot to rotate and center labels
        for i in range(nrows * ncols):
            fig.update_xaxes(tickangle=-15, row=i // ncols + 2, col=i % ncols + 1)

        fig.update_layout(
            height=500 * (nrows + 1),
            width=700 * ncols,
            showlegend=True,
            # Prevent plot from getting its top cut off, not showing the titles
            # margin keyword has no effect, instead we do:
            title_yanchor="top",
        )
        # fig.show()
    else:
        raise ValueError(f"Unknown plotting library: {plotting_library}")
    return fig


# Searching and filtering
def update_table_and_plot(
        hidden_df: pd.DataFrame,
        columns: list,
        type_query: list,
        precision_query: str,
        size_query: list,
        show_deleted: bool,
        query: str,
):
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    export_filename = export_csv(df)
    df = (df.style
          .format(precision=2, thousands=",", decimal=".")
          .highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:])
          .highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=-np.inf)
          )
    fig = plot_stats(DATA_PATH, columns=df.data.columns, table=df)
    return df, fig, export_filename


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    if query.lower().startswith("not "):
        return df[~(df[AutoEvalColumn.model.name].str.contains(query[4:], case=False))]
    else:
        return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        # AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
        ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            if _q != "" and not _q.lower().startswith("not "):
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            # filtered_df = filtered_df.drop_duplicates(
            #     subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            # )
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name]
            )
        for _q in queries:
            if _q != "" and  _q.lower().startswith("not "):
                filtered_df = search_table(filtered_df, _q)
    return filtered_df


def filter_models(
        df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    if show_deleted:
        filtered_df = df
    else:  # Show only still on the hub models
        filtered_df = df
        # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    # type_emoji = [t[0] for t in type_query]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    # numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    # params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    # mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    # filtered_df = filtered_df.loc[mask]

    return filtered_df


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )
            with gr.Row():
                shown_columns = gr.CheckboxGroup(
                    choices=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if not c.hidden and not c.never_hidden
                    ],
                    value=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if c.displayed_by_default and not c.hidden and not c.never_hidden
                    ],
                    label="Select columns to show",
                    elem_id="column-select",
                    interactive=True,
                )
            with gr.Row(visible=False):
                deleted_models_visibility = gr.Checkbox(
                    value=False, label="Show gated/private/deleted models", interactive=True
                )
        with gr.Column(min_width=320, visible=False):
            # with gr.Box(elem_id="box-filter"):
            filter_columns_type = gr.CheckboxGroup(
                label="Model types",
                choices=[t.to_str() for t in ModelType],
                value=[t.to_str() for t in ModelType],
                interactive=True,
                elem_id="filter-columns-type",
            )
            filter_columns_precision = gr.CheckboxGroup(
                label="Precision",
                choices=[i.value.name for i in Precision],
                value=[i.value.name for i in Precision],
                interactive=True,
                elem_id="filter-columns-precision",
            )
            filter_columns_size = gr.CheckboxGroup(
                label="Model sizes (in billions of parameters)",
                choices=list(NUMERIC_INTERVALS.keys()),
                value=list(NUMERIC_INTERVALS.keys()),
                interactive=True,
                elem_id="filter-columns-size",
            )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            cols_to_show = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
            leaderboard_table = gr.components.Dataframe(
                value=(leaderboard_df[cols_to_show].style
                       .format(precision=2, thousands=",", decimal=".")
                       .highlight_max(props="background-color: lightgreen; color: black;", axis=0,
                                      subset=cols_to_show[1:])
                       .highlight_between(props="color: red;", axis=0,
                                          subset=cols_to_show[1:], left=-np.inf, right=-np.inf)
                       ),
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )
            leaderboard_file = gr.File(interactive=False, value=export_csv(leaderboard_df[cols_to_show]), visible=True)

        with gr.TabItem("📊 LLM Plots", elem_id="llm-benchmark-tab-plot", id=1):
            leaderboard_plot = gr.components.Plot(plot_stats(DATA_PATH))

    # Dummy leaderboard for handling the case when the user uses backspace key
    hidden_leaderboard_table_for_search = gr.components.Dataframe(
        value=original_df[COLS],
        headers=COLS,
        datatype=TYPES,
        visible=False,
    )
    search_bar.submit(
        update_table_and_plot,
        [
            hidden_leaderboard_table_for_search,
            shown_columns,
            filter_columns_type,
            filter_columns_precision,
            filter_columns_size,
            deleted_models_visibility,
            search_bar,
        ],
        [
            leaderboard_table,
            leaderboard_plot,
            leaderboard_file,
        ],
    )
    for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
                     deleted_models_visibility]:
        selector.change(
            update_table_and_plot,
            [
                hidden_leaderboard_table_for_search,
                shown_columns,
                filter_columns_type,
                filter_columns_precision,
                filter_columns_size,
                deleted_models_visibility,
                search_bar,
            ],
            [
                leaderboard_table,
                leaderboard_plot,
                leaderboard_file,
            ],
            queue=True,
        )

        # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
        # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
        #     with gr.Column():
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

        #         with gr.Column():
        #             with gr.Accordion(
        #                 f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     finished_eval_table = gr.components.Dataframe(
        #                         value=finished_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #             with gr.Accordion(
        #                 f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     running_eval_table = gr.components.Dataframe(
        #                         value=running_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )

        #             with gr.Accordion(
        #                 f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     pending_eval_table = gr.components.Dataframe(
        #                         value=pending_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #     with gr.Row():
        #         gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

        #     with gr.Row():
        #         with gr.Column():
        #             model_name_textbox = gr.Textbox(label="Model name")
        #             revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
        #             model_type = gr.Dropdown(
        #                 choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
        #                 label="Model type",
        #                 multiselect=False,
        #                 value=None,
        #                 interactive=True,
        #             )

        #         with gr.Column():
        #             precision = gr.Dropdown(
        #                 choices=[i.value.name for i in Precision if i != Precision.Unknown],
        #                 label="Precision",
        #                 multiselect=False,
        #                 value="float16",
        #                 interactive=True,
        #             )
        #             weight_type = gr.Dropdown(
        #                 choices=[i.value.name for i in WeightType],
        #                 label="Weights type",
        #                 multiselect=False,
        #                 value="Original",
        #                 interactive=True,
        #             )
        #             base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

        #     submit_button = gr.Button("Submit Eval")
        #     submission_result = gr.Markdown()
        #     submit_button.click(
        #         add_new_eval,
        #         [
        #             model_name_textbox,
        #             base_model_name_textbox,
        #             revision_name_textbox,
        #             precision,
        #             weight_type,
        #             model_type,
        #         ],
        #         submission_result,
        #     )

    # with gr.Row():
    #     with gr.Accordion("📙 Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()