mimir-scandeval / app.py
versae's picture
Fixes negative search, removes NER tasks
27bbb6d
import json
import math
import subprocess
import tempfile
from pathlib import Path
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
Tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, DATA_PATH
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
raw_data, original_df = get_leaderboard_df(DATA_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
def export_csv(df):
csv_filename = Path(tempfile._get_default_tempdir()) / f"scandeval_leaderboard_{next(tempfile._get_candidate_names())}.csv"
df = df.copy()
df[AutoEvalColumn.model.name] = df[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3])
df.to_csv(csv_filename)
return str(csv_filename)
def plot_stats(data_path, plotting_library="plotly", columns=None, table=None):
plots = {}
files = Path(data_path).rglob("*.jsonl")
models = None
if table is not None:
models = table.data[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3]).values.tolist()
if columns is not None:
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks if
task.value.col_name in columns}
else:
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks}
model_names = []
for file in files:
with open(file) as f:
for line in f:
if not line.strip():
continue
line = json.loads(line)
if line["model"] not in model_names:
model_names.append(line["model"])
if models is not None and line["model"] not in models:
continue
metrics = {}
for r in line["results"]["raw"]["test"]:
for k, v in r.items():
key = (line["dataset"], k)
if key not in scores:
continue
val = plots.get(key, {})
val[line["model"]] = val.get(line["model"], []) + [v]
plots[key] = val
metrics.setdefault(k, []).append(v)
# Boxplot
# target_size = math.ceil(len(plots) ** 0.5)
ncols = 2 # target_size if target_size ** 2 == len(plots) else target_size + 1
nrows = len(plots) // 2 + len(plots) % 2 # target_size
if plotting_library == "matplotlib":
import matplotlib.pyplot as plt
if not plots:
return plt.subplots(1, 1)[0]
fig, axs = plt.subplots(nrows, ncols, figsize=(10 * ncols, 10 * nrows))
for i, (k, v) in enumerate(plots.items()):
ax = axs[i // ncols, i % ncols]
vk, vv = zip(*sorted(v.items()))
ax.boxplot(vv, tick_labels=vk)
# Tilt the x-axis labels slightly
for tick in ax.get_xticklabels():
tick.set_rotation(5)
ax.set_title(scores[k])
# fig.show()
fig.tight_layout()
# fig.savefig("results.png")
elif plotting_library == "plotly":
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
if not plots:
return make_subplots(rows=1, cols=1)
colors = dict(zip(model_names, px.colors.qualitative.Dark24))
plot_titles = [scores[k] for k in plots.keys()]
fig = make_subplots(rows=nrows + 1, cols=ncols, subplot_titles=[AutoEvalColumn.average.name] + plot_titles,
specs=[[{"colspan": ncols, "type": "scatterpolar"}] + [None] * (ncols - 1)] + [[{}] * ncols] * nrows,
start_cell="top-left",
vertical_spacing=0.05, horizontal_spacing=0.1)
scatters = {}
# print(fig.print_grid())
for i, (k, v) in enumerate(plots.items()):
vk, vv = zip(*sorted(v.items()))
for j, (label, data) in enumerate(zip(vk, vv)):
# Adding a box trace for each label in the subplot
# print(i // ncols + 2, i % ncols + 1)
fig.add_trace(go.Box(y=data, name=label, boxpoints=False, marker_color=colors[label], showlegend=False, legendgroup=f'group-{label}'),
row=i // ncols + 2, col=i % ncols + 1)
if label not in scatters:
scatters[label] = {}
scatters[label][plot_titles[i]] = np.mean(data) if max(data) < 1 else np.mean(data) / 100.0
for label, data in scatters.items():
fig.add_trace(go.Scatterpolar(
r=tuple(data.values()),
theta=tuple(data.keys()),
fill="toself",
name=label,
line_color=colors[label],
legendgroup=f'group-{label}',
), row=1, col=1)
# Update xaxis properties for each subplot to rotate and center labels
for i in range(nrows * ncols):
fig.update_xaxes(tickangle=-15, row=i // ncols + 2, col=i % ncols + 1)
fig.update_layout(
height=500 * (nrows + 1),
width=700 * ncols,
showlegend=True,
# Prevent plot from getting its top cut off, not showing the titles
# margin keyword has no effect, instead we do:
title_yanchor="top",
)
# fig.show()
else:
raise ValueError(f"Unknown plotting library: {plotting_library}")
return fig
# Searching and filtering
def update_table_and_plot(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
export_filename = export_csv(df)
df = (df.style
.format(precision=2, thousands=",", decimal=".")
.highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:])
.highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=-np.inf)
)
fig = plot_stats(DATA_PATH, columns=df.data.columns, table=df)
return df, fig, export_filename
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
if query.lower().startswith("not "):
return df[~(df[AutoEvalColumn.model.name].str.contains(query[4:], case=False))]
else:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
# AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
if _q != "" and not _q.lower().startswith("not "):
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
# filtered_df = filtered_df.drop_duplicates(
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
# )
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name]
)
for _q in queries:
if _q != "" and _q.lower().startswith("not "):
filtered_df = search_table(filtered_df, _q)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
# type_emoji = [t[0] for t in type_query]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row(visible=False):
deleted_models_visibility = gr.Checkbox(
value=False, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320, visible=False):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
cols_to_show = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
leaderboard_table = gr.components.Dataframe(
value=(leaderboard_df[cols_to_show].style
.format(precision=2, thousands=",", decimal=".")
.highlight_max(props="background-color: lightgreen; color: black;", axis=0,
subset=cols_to_show[1:])
.highlight_between(props="color: red;", axis=0,
subset=cols_to_show[1:], left=-np.inf, right=-np.inf)
),
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
leaderboard_file = gr.File(interactive=False, value=export_csv(leaderboard_df[cols_to_show]), visible=True)
with gr.TabItem("📊 LLM Plots", elem_id="llm-benchmark-tab-plot", id=1):
leaderboard_plot = gr.components.Plot(plot_stats(DATA_PATH))
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table_and_plot,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
[
leaderboard_table,
leaderboard_plot,
leaderboard_file,
],
)
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size,
deleted_models_visibility]:
selector.change(
update_table_and_plot,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
[
leaderboard_table,
leaderboard_plot,
leaderboard_file,
],
queue=True,
)
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
# with gr.Row():
# with gr.Accordion("📙 Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.queue(default_concurrency_limit=40).launch()