Spaces:
Runtime error
Runtime error
import json | |
import math | |
import subprocess | |
import tempfile | |
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
Tasks, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, DATA_PATH | |
from src.populate import get_leaderboard_df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
raw_data, original_df = get_leaderboard_df(DATA_PATH, COLS, BENCHMARK_COLS) | |
leaderboard_df = original_df.copy() | |
def export_csv(df): | |
csv_filename = Path(tempfile._get_default_tempdir()) / f"scandeval_leaderboard_{next(tempfile._get_candidate_names())}.csv" | |
df = df.copy() | |
df[AutoEvalColumn.model.name] = df[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3]) | |
df.to_csv(csv_filename) | |
return str(csv_filename) | |
def plot_stats(data_path, plotting_library="plotly", columns=None, table=None): | |
plots = {} | |
files = Path(data_path).rglob("*.jsonl") | |
models = None | |
if table is not None: | |
models = table.data[AutoEvalColumn.model.name].apply(lambda x: x.split(">")[1][:-3]).values.tolist() | |
if columns is not None: | |
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks if | |
task.value.col_name in columns} | |
else: | |
scores = {(task.value.benchmark, task.value.metric): task.value.col_name for task in Tasks} | |
model_names = [] | |
for file in files: | |
with open(file) as f: | |
for line in f: | |
if not line.strip(): | |
continue | |
line = json.loads(line) | |
if line["model"] not in model_names: | |
model_names.append(line["model"]) | |
if models is not None and line["model"] not in models: | |
continue | |
metrics = {} | |
for r in line["results"]["raw"]["test"]: | |
for k, v in r.items(): | |
key = (line["dataset"], k) | |
if key not in scores: | |
continue | |
val = plots.get(key, {}) | |
val[line["model"]] = val.get(line["model"], []) + [v] | |
plots[key] = val | |
metrics.setdefault(k, []).append(v) | |
# Boxplot | |
# target_size = math.ceil(len(plots) ** 0.5) | |
ncols = 2 # target_size if target_size ** 2 == len(plots) else target_size + 1 | |
nrows = len(plots) // 2 + len(plots) % 2 # target_size | |
if plotting_library == "matplotlib": | |
import matplotlib.pyplot as plt | |
if not plots: | |
return plt.subplots(1, 1)[0] | |
fig, axs = plt.subplots(nrows, ncols, figsize=(10 * ncols, 10 * nrows)) | |
for i, (k, v) in enumerate(plots.items()): | |
ax = axs[i // ncols, i % ncols] | |
vk, vv = zip(*sorted(v.items())) | |
ax.boxplot(vv, tick_labels=vk) | |
# Tilt the x-axis labels slightly | |
for tick in ax.get_xticklabels(): | |
tick.set_rotation(5) | |
ax.set_title(scores[k]) | |
# fig.show() | |
fig.tight_layout() | |
# fig.savefig("results.png") | |
elif plotting_library == "plotly": | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
if not plots: | |
return make_subplots(rows=1, cols=1) | |
colors = dict(zip(model_names, px.colors.qualitative.Dark24)) | |
plot_titles = [scores[k] for k in plots.keys()] | |
fig = make_subplots(rows=nrows + 1, cols=ncols, subplot_titles=[AutoEvalColumn.average.name] + plot_titles, | |
specs=[[{"colspan": ncols, "type": "scatterpolar"}] + [None] * (ncols - 1)] + [[{}] * ncols] * nrows, | |
start_cell="top-left", | |
vertical_spacing=0.05, horizontal_spacing=0.1) | |
scatters = {} | |
# print(fig.print_grid()) | |
for i, (k, v) in enumerate(plots.items()): | |
vk, vv = zip(*sorted(v.items())) | |
for j, (label, data) in enumerate(zip(vk, vv)): | |
# Adding a box trace for each label in the subplot | |
# print(i // ncols + 2, i % ncols + 1) | |
fig.add_trace(go.Box(y=data, name=label, boxpoints=False, marker_color=colors[label], showlegend=False, legendgroup=f'group-{label}'), | |
row=i // ncols + 2, col=i % ncols + 1) | |
if label not in scatters: | |
scatters[label] = {} | |
scatters[label][plot_titles[i]] = np.mean(data) if max(data) < 1 else np.mean(data) / 100.0 | |
for label, data in scatters.items(): | |
fig.add_trace(go.Scatterpolar( | |
r=tuple(data.values()), | |
theta=tuple(data.keys()), | |
fill="toself", | |
name=label, | |
line_color=colors[label], | |
legendgroup=f'group-{label}', | |
), row=1, col=1) | |
# Update xaxis properties for each subplot to rotate and center labels | |
for i in range(nrows * ncols): | |
fig.update_xaxes(tickangle=-15, row=i // ncols + 2, col=i % ncols + 1) | |
fig.update_layout( | |
height=500 * (nrows + 1), | |
width=700 * ncols, | |
showlegend=True, | |
# Prevent plot from getting its top cut off, not showing the titles | |
# margin keyword has no effect, instead we do: | |
title_yanchor="top", | |
) | |
# fig.show() | |
else: | |
raise ValueError(f"Unknown plotting library: {plotting_library}") | |
return fig | |
# Searching and filtering | |
def update_table_and_plot( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
show_deleted: bool, | |
query: str, | |
): | |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
export_filename = export_csv(df) | |
df = (df.style | |
.format(precision=2, thousands=",", decimal=".") | |
.highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:]) | |
.highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=-np.inf) | |
) | |
fig = plot_stats(DATA_PATH, columns=df.data.columns, table=df) | |
return df, fig, export_filename | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
if query.lower().startswith("not "): | |
return df[~(df[AutoEvalColumn.model.name].str.contains(query[4:], case=False))] | |
else: | |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
# AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
if _q != "" and not _q.lower().startswith("not "): | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
# filtered_df = filtered_df.drop_duplicates( | |
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
# ) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name] | |
) | |
for _q in queries: | |
if _q != "" and _q.lower().startswith("not "): | |
filtered_df = search_table(filtered_df, _q) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
if show_deleted: | |
filtered_df = df | |
else: # Show only still on the hub models | |
filtered_df = df | |
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
# type_emoji = [t[0] for t in type_query] | |
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
# filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(visible=False): | |
deleted_models_visibility = gr.Checkbox( | |
value=False, label="Show gated/private/deleted models", interactive=True | |
) | |
with gr.Column(min_width=320, visible=False): | |
# with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
cols_to_show = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value | |
leaderboard_table = gr.components.Dataframe( | |
value=(leaderboard_df[cols_to_show].style | |
.format(precision=2, thousands=",", decimal=".") | |
.highlight_max(props="background-color: lightgreen; color: black;", axis=0, | |
subset=cols_to_show[1:]) | |
.highlight_between(props="color: red;", axis=0, | |
subset=cols_to_show[1:], left=-np.inf, right=-np.inf) | |
), | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
leaderboard_file = gr.File(interactive=False, value=export_csv(leaderboard_df[cols_to_show]), visible=True) | |
with gr.TabItem("📊 LLM Plots", elem_id="llm-benchmark-tab-plot", id=1): | |
leaderboard_plot = gr.components.Plot(plot_stats(DATA_PATH)) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table_and_plot, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
], | |
[ | |
leaderboard_table, | |
leaderboard_plot, | |
leaderboard_file, | |
], | |
) | |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, | |
deleted_models_visibility]: | |
selector.change( | |
update_table_and_plot, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
], | |
[ | |
leaderboard_table, | |
leaderboard_plot, | |
leaderboard_file, | |
], | |
queue=True, | |
) | |
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Row(): | |
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name_textbox = gr.Textbox(label="Model name") | |
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
# model_type = gr.Dropdown( | |
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
# label="Model type", | |
# multiselect=False, | |
# value=None, | |
# interactive=True, | |
# ) | |
# with gr.Column(): | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
# submit_button = gr.Button("Submit Eval") | |
# submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_eval, | |
# [ | |
# model_name_textbox, | |
# base_model_name_textbox, | |
# revision_name_textbox, | |
# precision, | |
# weight_type, | |
# model_type, | |
# ], | |
# submission_result, | |
# ) | |
# with gr.Row(): | |
# with gr.Accordion("📙 Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
# scheduler = BackgroundScheduler() | |
# scheduler.add_job(restart_space, "interval", seconds=1800) | |
# scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |