Spaces:
Sleeping
Sleeping
File size: 17,074 Bytes
59dd739 c47c7dc 59dd739 55d47b9 c47c7dc 59dd739 55d47b9 c47c7dc 55d47b9 c47c7dc 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 59dd739 55d47b9 c47c7dc 55d47b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import re
import argparse
import torch
import gradio as gr
import pandas as pd
import plotly.express as px
import numpy as np
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *
from typing import List, Dict, Any
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='/data/mohamed/data')
parser.add_argument('--aim_repo', default='/data/mohamed/')
parser.add_argument('--ckpt', default='electra-base.pt')
parser.add_argument('--aim_exp', default='mimic-decisions-1215')
parser.add_argument('--label_encoding', default='multiclass')
parser.add_argument('--multiclass', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_losses', action='store_true')
parser.add_argument('--task', default='token', choices=['seq', 'token'])
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
parser.add_argument('--model', default='roberta-base',)
parser.add_argument('--model_name', default='google/electra-base-discriminator',)
parser.add_argument('--gpu', default='0')
parser.add_argument('--grad_accumulation', default=2, type=int)
parser.add_argument('--pheno_id', type=int)
parser.add_argument('--unseen_pheno', type=int)
parser.add_argument('--text_subset')
parser.add_argument('--pheno_n', type=int, default=500)
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--emb_size', type=int, default=400)
parser.add_argument('--total_steps', type=int, default=5000)
parser.add_argument('--train_log', type=int, default=500)
parser.add_argument('--val_log', type=int, default=1000)
parser.add_argument('--seed', default = '0')
parser.add_argument('--num_phenos', type=int, default=10)
parser.add_argument('--num_decs', type=int, default=9)
parser.add_argument('--num_umls_tags', type=int, default=33)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--pos_weight', type=float, default=1.25)
parser.add_argument('--alpha_distil', type=float, default=1)
parser.add_argument('--distil', action='store_true')
parser.add_argument('--distil_att', action='store_true')
parser.add_argument('--distil_ckpt')
parser.add_argument('--use_umls', action='store_true')
parser.add_argument('--include_nolabel', action='store_true')
parser.add_argument('--truncate_train', action='store_true')
parser.add_argument('--truncate_eval', action='store_true')
parser.add_argument('--load_ckpt', action='store_true')
parser.add_argument('--gradio', action='store_true')
parser.add_argument('--optuna', action='store_true')
parser.add_argument('--mimic_data', action='store_true')
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--lr', type=float, default=4e-5)
parser.add_argument('--resample', default='')
parser.add_argument('--verbose', type=bool, default=True)
parser.add_argument('--use_crf', type=bool)
parser.add_argument('--print_spans', action='store_true')
return parser.parse_args()
args = get_args()
if args.task == 'seq' and args.pheno_id is not None:
args.num_labels = 1
elif args.task == 'seq':
args.num_labels = args.num_phenos
elif args.task == 'token':
if args.use_umls:
args.num_labels = args.num_umls_tags
else:
args.num_labels = args.num_decs
if args.label_encoding == 'multiclass':
args.num_labels = args.num_labels * 2 + 1
elif args.label_encoding == 'bo':
args.num_labels *= 2
elif args.label_encoding == 'boe':
args.num_labels *= 3
categories = ['Contact related', 'Gathering additional information', 'Defining problem',
'Treatment goal', 'Drug related', 'Therapeutic procedure related', 'Evaluating test result',
'Deferment', 'Advice and precaution', 'Legal and insurance related']
unicode_symbols = [
"\U0001F91D", # Handshake
"\U0001F50D", # Magnifying glass
"\U0001F9E9", # Puzzle piece
"\U0001F3AF", # Target
"\U0001F48A", # Pill
"\U00002702", # Surgical scissors
"\U0001F9EA", # Test tube
"\U000023F0", # Alarm clock
"\U000026A0", # Warning sign
"\U0001F4C4" # Document
]
OTHERS_ID = 18
def postprocess_labels(text, logits, t2c):
tags = [None for _ in text]
labels = logits.argmax(-1)
for i,cat in enumerate(labels):
if cat != OTHERS_ID:
char_ids = t2c(i)
if char_ids is None:
continue
for idx in range(char_ids.start, char_ids.end):
if tags[idx] is None and idx < len(text):
tags[idx] = categories[cat // 2]
for i in range(len(text)-1):
if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
tags[i] = tags[i-1]
return tags
def indicators_to_spans(labels, t2c = None):
def add_span(c, start, end):
if t2c(start) is None or t2c(end) is None:
start, end = -1, -1
else:
start = t2c(start).start
end = t2c(end).end
span = (c, start, end)
spans.add(span)
spans = set()
num_tokens = len(labels)
num_classes = OTHERS_ID // 2
start = None
cls = None
for t in range(num_tokens):
if start and labels[t] == cls + 1:
continue
elif start:
add_span(cls // 2, start, t - 1)
start = None
# if not start and labels[t] in [2*x for x in range(num_classes)]:
if not start and labels[t] != OTHERS_ID:
start = t
cls = int(labels[t]) // 2 * 2
return spans
def extract_date(text):
pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
match = re.search(pattern, text).group(1)
start, end = None, None
for i, c in enumerate(match):
if start is None and c.isnumeric():
start = i
elif c.isnumeric():
end = i + 1
match = match[start:end]
return match
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)
def predict(text):
encoding = tokenizer.encode_plus(text)
x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
mask = torch.ones_like(x)
output = model.generate(x, mask)[0]
return output, encoding.token_to_chars
def process(text):
if text is not None:
output, t2c = predict(text)
tags = postprocess_labels(text, output, t2c)
with open('log.csv', 'a') as f:
f.write(f'{datetime.now()},{text}\n')
return list(zip(text, tags))
else:
return text
def process_sum(*inputs):
global sum_c
dates = {}
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
present_decs = set(cat for cat, _, _ in spans)
decs = {k: [] for k in sorted(present_decs)}
for c, s, e in spans:
decs[c].append(text[s:e])
dates[date] = decs
out = ""
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
out += f'## **[{date}]**\n\n'
decs = dates[date]
for c in decs:
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
for dec in decs[c]:
out += f'{dec}\n\n'
return out
def get_structured_data(*inputs):
global sum_c
data = []
for i in range(sum_c):
text = inputs[i]
output, t2c = predict(text)
spans = indicators_to_spans(output.argmax(-1), t2c)
date = extract_date(text)
for c, s, e in spans:
data.append({
'date': date,
'timestamp': parser.parse(date),
'decision_type': categories[c], 'details': text[s:e]})
return data
def update_inputs(inputs):
outputs = []
if inputs is None:
c = 0
else:
inputs = [open(f.name).read() for f in inputs]
for i, text in enumerate(inputs):
outputs.append(gr.update(value=text, visible=True))
c = len(inputs)
n = SUM_INPUTS
for i in range(n - c):
outputs.append(gr.update(value='', visible=False))
global sum_c; sum_c = c
global structured_data
structured_data = get_structured_data(*inputs) if inputs is not None else []
return outputs
def add_ex(*inputs):
global sum_c
new_idx = sum_c
if new_idx < SUM_INPUTS:
out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
sum_c += 1
else:
out = inputs
return out
def sub_ex(*inputs):
global sum_c
new_idx = sum_c - 1
if new_idx > 0:
out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
sum_c -= 1
else:
out = inputs
return out
def create_timeline_plot(data: List[Dict[str, Any]]):
df = pd.DataFrame(data)
# df['int_cat'] = pd.factorize(df['decision_type'])[0]
# df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
# fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
# title='Patient Timeline')
# fig.update_layout(
# yaxis=dict(
# tickmode='array',
# tickvals=df['int_cat'].unique(),
# ticktext=df['decision_type'].unique()),
# xaxis_title='Date',
# yaxis_title='Category')
fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
stripmode = "overlay",
title='Patient Timeline')
fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
fig.update_layout(height=600)
return fig
def filter_timeline(decision_type: str, start_date: str, end_date: str) -> px.scatter:
global structured_data
filtered_data = structured_data
if 'All' not in decision_types:
filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
start = parser.parse(start_date)
end = parser.parse(end_date)
filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
return create_timeline_plot(filtered_data)
def generate_summary(*inputs) -> str:
global structured_data
structured_data = get_structured_data(*inputs)
decision_types = {}
for event in structured_data:
decision_type = event['decision_type']
decision_types[decision_type] = decision_types.get(decision_type, 0) + 1
summary = "Decision Type Summary:\n"
for decision_type, count in decision_types.items():
summary += f"{decision_type}: {count}\n"
return summary, create_timeline_plot(structured_data)
global sum_c
sum_c = 1
SUM_INPUTS = 20
structured_data = []
device = model.backbone.device
# colors = ['aqua', 'blue', 'fuchsia', 'teal', 'green', 'olive', 'lime', 'silver', 'purple', 'red',
# 'yellow', 'navy', 'gray', 'white', 'maroon', 'black']
colors = ['#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd']
color_map = {cat: colors[i] for i,cat in enumerate(categories)}
det_desc = ['Admit, discharge, follow-up, referral',
'Ordering test, consulting colleague, seeking external information',
'Diagnostic conclusion, evaluation of health state, etiological inference, prognostic judgment',
'Quantitative or qualitative',
'Start, stop, alter, maintain, refrain',
'Start, stop, alter, maintain, refrain',
'Positive, negative, ambiguous test results',
'Transfer responsibility, wait and see, change subject',
'Advice or precaution',
'Sick leave, drug refund, insurance, disability']
desc = '### Zones (categories)\n'
desc += '| | |\n| --- | --- |\n'
for i,cat in enumerate(categories):
desc += f'| {unicode_symbols[i]} **{cat}** | {det_desc[i]}|\n'
#colors
#markdown labels
#legend and desc
#css font-size
css = '.category-legend {border:1px dashed black;}'\
'.text-sm {font-size: 1.5rem; line-height: 200%;}'\
'.gr-sample-textbox {width: 1000px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}'\
'.text-limit label textarea {height: 150px !important; overflow: scroll; }'\
'.text-gray-500 {color: #111827; font-weight: 600; font-size: 1.25em; margin-top: 1.6em; margin-bottom: 0.6em;'\
'line-height: 1.6;}'\
'#sum-out {border: 2px solid #007bff; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'
title='Clinical Decision Zoning'
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(f'# {title}')
with gr.Tab("Label a Clinical Note"):
with gr.Row():
with gr.Column():
gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
text_input = gr.Textbox(
# value=examples[0],
label="",
placeholder="Enter text here...")
text_btn = gr.Button('Run')
with gr.Column():
gr.Markdown("## Labeled Summary or Note"),
text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
gr.Examples(text_examples, inputs=text_input)
with gr.Tab("Summarize Patient History"):
with gr.Row():
with gr.Column():
sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
for i in range(2, SUM_INPUTS + 1)])
sum_btn = gr.Button('Run')
with gr.Row():
ex_add = gr.Button("+")
ex_sub = gr.Button("-")
upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
gr.Examples(sum_examples, inputs=upload,
fn = update_inputs, outputs=sum_inputs, run_on_click=True)
with gr.Column():
gr.Markdown("## Summarized Clinical Decision History")
sum_out = gr.Markdown(elem_id='sum-out')
with gr.Tab("Timeline Visualization Tool"):
with gr.Column():
sum_inputs2 = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
sum_inputs2.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
for i in range(2, SUM_INPUTS + 1)])
with gr.Row():
ex_add2 = gr.Button("+")
ex_sub2 = gr.Button("-")
upload2 = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
gr.Examples(sum_examples, inputs=upload2,
fn = update_inputs, outputs=sum_inputs2, run_on_click=True)
with gr.Column():
with gr.Row():
decision_type = gr.Dropdown(["All"] + categories,
multiselect=True,
label="Decision Type", value="All")
start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
filter_button = gr.Button("Filter Timeline")
timeline_plot = gr.Plot()
summary_button = gr.Button("Generate Summary")
summary_output = gr.Textbox(label="Summary")
gr.Markdown(desc)
# Functions
text_input.submit(process, inputs=text_input, outputs=text_out)
text_btn.click(process, inputs=text_input, outputs=text_out)
upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
upload2.change(update_inputs, inputs=upload2, outputs=sum_inputs2)
ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
ex_add2.click(add_ex, inputs=sum_inputs2, outputs=sum_inputs2)
ex_sub2.click(sub_ex, inputs=sum_inputs2, outputs=sum_inputs2)
sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
summary_button.click(generate_summary, inputs=sum_inputs2, outputs=[summary_output, timeline_plot])
demo.launch(share=True)
|