File size: 4,175 Bytes
c625a8c
 
 
654eaa0
30b9c64
654eaa0
 
f88f764
c625a8c
6a34b4c
 
 
609ebbf
 
 
6a34b4c
609ebbf
 
 
 
 
 
 
 
 
 
654eaa0
 
 
 
 
609ebbf
c9e4960
654eaa0
c625a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f2c3c
 
 
c625a8c
 
 
 
 
 
 
 
 
 
f88f764
c625a8c
609ebbf
08499cc
c625a8c
c4894e1
 
 
c625a8c
609ebbf
c4894e1
4b8eb16
 
ef6577b
c625a8c
efb4830
ce5ddf6
5b0eb6a
66da31c
5b0eb6a
66da31c
 
 
 
 
5b0eb6a
f181ae2
5b0eb6a
c625a8c
 
da2cdb2
5b0eb6a
c625a8c
 
 
 
 
 
1322444
609ebbf
08499cc
 
 
 
1322444
 
609ebbf
1322444
08499cc
 
1322444
 
 
ef6577b
1322444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8cc78
c625a8c
 
 
6c8cc78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import fastapi
from fastapi.responses import JSONResponse
from time import time
#MODEL_PATH = "./qwen1_5-0_5b-chat-q4_0.gguf" #"./qwen1_5-0_5b-chat-q4_0.gguf"
import logging
import llama_cpp
import llama_cpp.llama_tokenizer
from pydantic import BaseModel


class GenModel(BaseModel):
    question: str
    system: str = "You are a professional medical assistant."
    temperature: float = 0.8
    seed: int = 101
    
llm_chat = llama_cpp.Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
    verbose=False,
     n_ctx=1024,
     n_gpu_layers=0,
    #chat_format="llama-2"
)
llm_generate = llama_cpp.Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
    verbose=False,
     n_ctx=4096,
     n_gpu_layers=0,
    #chat_format="llama-2"
)
# Logger setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Llama model
"""
try:
    llm = Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    verbose=False,
        n_ctx=4096,
        n_threads=4,
        n_gpu_layers=0,
)
    
    llm = Llama(
        model_path=MODEL_PATH,
        chat_format="llama-2",
        n_ctx=4096,
        n_threads=8,
        n_gpu_layers=0,
    )
    
except Exception as e:
    logger.error(f"Failed to load model: {e}")
    raise
"""

app = fastapi.FastAPI(
    title="OpenGenAI",
    description="Your Excellect Physician")


@app.get("/")
def index():
    return fastapi.responses.RedirectResponse(url="/docs")


@app.get("/health")
def health():
    return {"status": "ok"}
    
# Chat Completion API
@app.post("/chat/")
async def chat(gen:GenModel):
    try:
        messages=[
                {"role": "system", "content": gen.system},
            ]
        st = time()
        output = llm_chat.create_chat_completion(
            messages = messages,
            temperature=gen.temperature,
            seed=gen.seed,
            #stream=True
        )
        messages.append({"role": "user", "content": gen.question},)
        print(output)
        """
        for chunk in output:
            
            delta = chunk['choices'][0]['delta']
            if 'role' in delta:
                print(delta['role'], end=': ')
            elif 'content' in delta:
                print(delta['content'], end='')
            
            print(chunk)
        """
        et = time()
        output["time"] = et - st
        messages.append({'role': "assistant", "content": output['choices'][0]['message']})
        return output
    except Exception as e:
        logger.error(f"Error in /complete endpoint: {e}")
        return JSONResponse(
            status_code=500, content={"message": "Internal Server Error"}
        )

# Chat Completion API
@app.get("/generate")
async def generate(gen:GenModel):
    gen.system: str = "You are an AI assistant."
    gen.temperature: float = 0.5
    gen.seed: int = 42
    try:
        st = time()
        output = llm_generate.create_chat_completion(
            messages=[
                {"role": "system", "content": gen.system},
                {"role": "user", "content": gen.question},
            ],
            temperature=temperature,
            seed=seed,
            #stream=True
        )
        """
        for chunk in output:
            
            delta = chunk['choices'][0]['delta']
            if 'role' in delta:
                print(delta['role'], end=': ')
            elif 'content' in delta:
                print(delta['content'], end='')
            
            print(chunk)
        """
        et = time()
        output["time"] = et - st
        return output
    except Exception as e:
        logger.error(f"Error in /complete endpoint: {e}")
        return JSONResponse(
            status_code=500, content={"message": "Internal Server Error"}
        )



if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=7860)