File size: 1,874 Bytes
4ef7343
2a768ff
 
35bb005
edfd1dd
35bb005
 
 
2a768ff
49dc777
2a768ff
bab6e4b
2a768ff
35bb005
2a768ff
49dc777
35bb005
 
 
2a768ff
 
 
35bb005
2a768ff
 
 
 
 
 
9a7af47
2a768ff
 
9bdf0ae
 
49dc777
 
 
 
 
 
 
 
 
 
 
b34b2e4
49dc777
b34b2e4
49dc777
 
 
 
 
 
 
443ba67
9bdf0ae
443ba67
49dc777
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import gradio as gr
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
import spaces

# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipeline.to(device)

@spaces.GPU(duration=120)
def generate_video(image_path, seed):
    # Load and preprocess the image
    image = load_image(image_path)
    image = image.resize((1024, 576))

    # Set the generator seed
    generator = torch.Generator(device=device).manual_seed(seed)

    # Generate the video frames
    frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]

    # Export the frames to a video file
    output_video_path = "generated.mp4"
    export_to_video(frames, output_video_path, fps=25)

    return output_video_path

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Stable Video Diffusion")
    gr.Markdown("Generate a video from an uploaded image using Stable Video Diffusion.")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="Upload Image")
            seed_input = gr.Number(label="Seed", value=666666)
            generate_button = gr.Button("Generate Video")
        with gr.Column():
            video_output = gr.Video(label="Generated Video")
    
    with gr.Row():
        example_image = gr.Image("example.jpeg", label="Example Image")
        example_video = gr.Video("generated.mp4", label="Example Video")

    generate_button.click(
        fn=generate_video,
        inputs=[image_input, seed_input],
        outputs=video_output
    )

# Launch the interface
if __name__ == "__main__":
    demo.launch()