Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,466 Bytes
4ef7343 2a768ff 35bb005 edfd1dd 35bb005 2a768ff bab6e4b 2a768ff 35bb005 2a768ff 0bf4a8e 35bb005 2a768ff 35bb005 2a768ff 9a7af47 2a768ff 9bdf0ae 2a768ff 35bb005 9a7af47 2a768ff 0bfa377 88a9dbd dea9c7f 254cae3 00e4e84 2d5fd2a 9bdf0ae aec76ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import torch
import gradio as gr
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
import spaces
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipeline.to(device)
@spaces.GPU(duration=120)
def generate_video(image_path, seed):
# Load and preprocess the image
image = load_image(image_path)
image = image.resize((1024, 576))
# Set the generator seed
generator = torch.Generator(device=device).manual_seed(seed)
# Generate the video frames
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
# Export the frames to a video file
output_video_path = "generated.mp4"
export_to_video(frames, output_video_path, fps=25)
return output_video_path
# Create the Gradio interface
iface = gr.Interface(
fn=generate_video,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.Number(label="Seed", value=666666)
],
outputs=gr.Video(label="Generated Video"),
title="Stable Video Diffusion",
examples=[
["image.jpeg"],
["generated.mp4"]
],
description="Generate a video from an uploaded image using Stable Video Diffusion.",
)
# Launch the interface
iface.launch()
|