Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
import spaces | |
# Check if GPU is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the pipeline | |
pipeline = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" | |
) | |
pipeline.to(device) | |
def generate_video(image_path, seed): | |
# Load and preprocess the image | |
image = load_image(image_path) | |
image = image.resize((1024, 576)) | |
# Set the generator seed | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Generate the video frames | |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0] | |
# Export the frames to a video file | |
output_video_path = "generated.mp4" | |
export_to_video(frames, output_video_path, fps=25) | |
return output_video_path | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Stable Video Diffusion") | |
gr.Markdown("Generate a video from an uploaded image using Stable Video Diffusion.") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="Upload Image") | |
seed_input = gr.Number(label="Seed", value=666666) | |
generate_button = gr.Button("Generate Video") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
with gr.Row(): | |
example_image = gr.Image("example.jpeg", label="Example Image") | |
example_video = gr.Video("generated.mp4", label="Example Video") | |
generate_button.click( | |
fn=generate_video, | |
inputs=[image_input, seed_input], | |
outputs=video_output | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch() |