|
|
|
import torch |
|
import gradio as gr |
|
|
|
from typing import Dict |
|
from transformers import pipeline |
|
|
|
|
|
def food_not_food_classifier(text: str) -> Dict[str, float]: |
|
|
|
food_not_food_classifier = pipeline(task="text-classification", |
|
|
|
model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", |
|
device="cuda" if torch.cuda.is_available() else "cpu", |
|
top_k=None) |
|
|
|
|
|
outputs = food_not_food_classifier(text)[0] |
|
|
|
|
|
output_dict = {} |
|
for item in outputs: |
|
output_dict[item["label"]] = item["score"] |
|
|
|
return output_dict |
|
|
|
|
|
description = """ |
|
A text classifier to determine if a sentence is about food or not food. |
|
|
|
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions). |
|
|
|
See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb). |
|
""" |
|
|
|
demo = gr.Interface(fn=food_not_food_classifier, |
|
inputs="text", |
|
outputs=gr.Label(num_top_classes=2), |
|
title="ππ«π₯ Food or Not Food Text Classifier", |
|
description=description, |
|
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."], |
|
["A delicious photo of a plate of scrambled eggs, bacon and toast."]]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|