|
import urllib.request |
|
import fitz |
|
import re |
|
import numpy as np |
|
import tensorflow_hub as hub |
|
import openai |
|
import gradio as gr |
|
import os |
|
from sklearn.neighbors import NearestNeighbors |
|
|
|
def download_pdf(url, output_path): |
|
urllib.request.urlretrieve(url, output_path) |
|
|
|
|
|
def preprocess(text): |
|
text = text.replace('\n', ' ') |
|
text = re.sub('\s+', ' ', text) |
|
return text |
|
|
|
|
|
def pdf_to_text(path, start_page=1, end_page=None): |
|
doc = fitz.open(path) |
|
total_pages = doc.page_count |
|
|
|
if end_page is None: |
|
end_page = total_pages |
|
|
|
text_list = [] |
|
|
|
for i in range(start_page-1, end_page): |
|
text = doc.load_page(i).get_text("text") |
|
text = preprocess(text) |
|
text_list.append(text) |
|
|
|
doc.close() |
|
return text_list |
|
|
|
|
|
def text_to_chunks(texts, word_length=150, start_page=1): |
|
text_toks = [t.split(' ') for t in texts] |
|
page_nums = [] |
|
chunks = [] |
|
|
|
for idx, words in enumerate(text_toks): |
|
for i in range(0, len(words), word_length): |
|
chunk = words[i:i+word_length] |
|
if (i+word_length) > len(words) and (len(chunk) < word_length) and ( |
|
len(text_toks) != (idx+1)): |
|
text_toks[idx+1] = chunk + text_toks[idx+1] |
|
continue |
|
chunk = ' '.join(chunk).strip() |
|
chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"' |
|
chunks.append(chunk) |
|
return chunks |
|
|
|
|
|
class SemanticSearch: |
|
|
|
def __init__(self): |
|
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') |
|
self.fitted = False |
|
|
|
|
|
def fit(self, data, batch=1000, n_neighbors=5): |
|
self.data = data |
|
self.embeddings = self.get_text_embedding(data, batch=batch) |
|
n_neighbors = min(n_neighbors, len(self.embeddings)) |
|
self.nn = NearestNeighbors(n_neighbors=n_neighbors) |
|
self.nn.fit(self.embeddings) |
|
self.fitted = True |
|
|
|
|
|
def __call__(self, text, return_data=True): |
|
inp_emb = self.use([text]) |
|
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] |
|
|
|
if return_data: |
|
return [self.data[i] for i in neighbors] |
|
else: |
|
return neighbors |
|
|
|
|
|
def get_text_embedding(self, texts, batch=1000): |
|
embeddings = [] |
|
for i in range(0, len(texts), batch): |
|
text_batch = texts[i:(i+batch)] |
|
emb_batch = self.use(text_batch) |
|
embeddings.append(emb_batch) |
|
embeddings = np.vstack(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_recommender(path, start_page=1): |
|
global recommender |
|
pdf_file = os.path.basename(path) |
|
embeddings_file = f"{pdf_file}_{start_page}.npy" |
|
|
|
if os.path.isfile(embeddings_file): |
|
embeddings = np.load(embeddings_file) |
|
recommender.embeddings = embeddings |
|
recommender.fitted = True |
|
return "Embeddings loaded from file" |
|
|
|
texts = pdf_to_text(path, start_page=start_page) |
|
chunks = text_to_chunks(texts, start_page=start_page) |
|
recommender.fit(chunks) |
|
np.save(embeddings_file, recommender.embeddings) |
|
return 'Corpus Loaded.' |
|
|
|
|
|
|
|
def generate_text(openAI_key,prompt, engine="text-davinci-003"): |
|
openai.api_key = openAI_key |
|
completions = openai.Completion.create( |
|
engine=engine, |
|
prompt=prompt, |
|
max_tokens=512, |
|
n=1, |
|
stop=None, |
|
temperature=0.7, |
|
) |
|
message = completions.choices[0].text |
|
return message |
|
|
|
def generate_text2(openAI_key, prompt, engine="gpt-3.5-turbo-0301"): |
|
openai.api_key = openAI_key |
|
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'}, |
|
{'role': 'user', 'content': prompt}] |
|
|
|
completions = openai.ChatCompletion.create( |
|
model=engine, |
|
messages=messages, |
|
max_tokens=512, |
|
n=1, |
|
stop=None, |
|
temperature=0.7, |
|
) |
|
message = completions.choices[0].message['content'] |
|
return message |
|
|
|
def generate_answer(question,openAI_key): |
|
topn_chunks = recommender(question) |
|
prompt = "" |
|
prompt += 'search results:\n\n' |
|
for c in topn_chunks: |
|
prompt += c + '\n\n' |
|
|
|
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ |
|
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\ |
|
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ |
|
"with the same name, create separate answers for each. Only include information found in the results and "\ |
|
"don't add any additional information. Make sure the answer is correct and don't output false content. "\ |
|
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\ |
|
"search results which has nothing to do with the question. Only answer what is asked. The "\ |
|
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: " |
|
|
|
prompt += f"Query: {question}\nAnswer:" |
|
answer = generate_text(openAI_key, prompt,"text-davinci-003") |
|
return answer |
|
|
|
|
|
def question_answer(url, file, question,openAI_key): |
|
if openAI_key.strip()=='': |
|
return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys' |
|
if url.strip() == '' and file == None: |
|
return '[ERROR]: Both URL and PDF is empty. Provide atleast one.' |
|
|
|
if url.strip() != '' and file != None: |
|
return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).' |
|
|
|
if url.strip() != '': |
|
glob_url = url |
|
download_pdf(glob_url, 'corpus.pdf') |
|
load_recommender('corpus.pdf') |
|
|
|
else: |
|
old_file_name = file.name |
|
file_name = file.name |
|
file_name = file_name[:-12] + file_name[-4:] |
|
os.rename(old_file_name, file_name) |
|
load_recommender(file_name) |
|
|
|
if question.strip() == '': |
|
return '[ERROR]: Question field is empty' |
|
|
|
return generate_answer(question,openAI_key) |
|
|
|
|
|
recommender = SemanticSearch() |
|
|
|
title = 'Chat with Your PDFs' |
|
description = """ Instructions |
|
1. Input your API Key |
|
2. Upload PDF""" |
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown(f'<center><h1>{title}</h1></center>') |
|
gr.Markdown(description) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Group(): |
|
gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>') |
|
openAI_key=gr.Textbox(label='Enter your OpenAI API key here') |
|
url = gr.Textbox(label='Enter PDF URL here') |
|
gr.Markdown("<center><h4>OR<h4></center>") |
|
file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf']) |
|
question = gr.Textbox(label='Enter your question here') |
|
btn = gr.Button(value='Submit') |
|
btn.style(full_width=True) |
|
|
|
with gr.Group(): |
|
answer = gr.Textbox(label='Answer :') |
|
|
|
btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer]) |
|
|
|
demo.launch() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|