Spaces:
Sleeping
Sleeping
#importing the necessary libraries | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
#Defining the labels of the models | |
labels = ['Politics', 'Tech', 'Entertainment', 'Business', 'World', 'Sport'] | |
#Defining the models and tokenuzer | |
model_name = 'valurank/finetuned-distilbert-news-article-categorization' | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
#Reading in the text file | |
def read_in_text(url): | |
with open(url, 'r') as file: | |
article = file.read() | |
return article | |
#Defining a function to get the category of the news article | |
def get_category(file): | |
text = read_in_text(file.name) | |
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True) | |
logits = model(input_tensor).logits | |
softmax = torch.nn.Softmax(dim=1) | |
probs = softmax(logits)[0] | |
probs = probs.cpu().detach().numpy() | |
max_index = np.argmax(probs) | |
emotion = labels[max_index] | |
return emotion | |
#Creating the interface for the radio app | |
demo = gr.Interface(get_category, inputs=gr.inputs.File(label='Upload your .txt file here'), | |
outputs = 'text', | |
title='News Article Categorization') | |
#Launching the radio app | |
if __name__ == '__main__': | |
demo.launch(debug=True) |