Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers.utils import load_image | |
from controlnet_flux import FluxControlNetModel | |
from transformer_flux import FluxTransformer2DModel | |
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
from PIL import Image, ImageDraw | |
# Load models | |
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16) | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
pipe.controlnet.to(torch.bfloat16) | |
def prepare_image_and_mask(image, width, height, overlap_percentage): | |
# Resize the input image to fit within the target size | |
image.thumbnail((width, height), Image.LANCZOS) | |
# Create a new white background image of the target size | |
background = Image.new('RGB', (width, height), (255, 255, 255)) | |
# Paste the resized image onto the background | |
offset = ((width - image.width) // 2, (height - image.height) // 2) | |
background.paste(image, offset) | |
# Create a mask | |
mask = Image.new('L', (width, height), 255) | |
draw = ImageDraw.Draw(mask) | |
# Calculate the overlap area | |
overlap_x = int(image.width * overlap_percentage / 100) | |
overlap_y = int(image.height * overlap_percentage / 100) | |
# Draw the mask (black area is where we want to inpaint) | |
draw.rectangle([ | |
(offset[0] + overlap_x, offset[1] + overlap_y), | |
(offset[0] + image.width - overlap_x, offset[1] + image.height - overlap_y) | |
], fill=0) | |
return background, mask | |
def inpaint(image, prompt, width, height, overlap_percentage, num_inference_steps, guidance_scale): | |
# Prepare image and mask | |
image, mask = prepare_image_and_mask(image, width, height, overlap_percentage) | |
# Set up generator for reproducibility | |
generator = torch.Generator(device="cuda").manual_seed(42) | |
# Run inpainting | |
result = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
control_image=image, | |
control_mask=mask, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
controlnet_conditioning_scale=0.9, | |
guidance_scale=guidance_scale, | |
negative_prompt="", | |
true_guidance_scale=guidance_scale | |
).images[0] | |
return result | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# FLUX Outpainting Demo") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
prompt_input = gr.Textbox(label="Prompt") | |
width_slider = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=768) | |
height_slider = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=768) | |
overlap_slider = gr.Slider(label="Overlap Percentage", minimum=0, maximum=50, step=1, value=10) | |
steps_slider = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=28) | |
guidance_slider = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=10.0, step=0.1, value=3.5) | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
run_button.click( | |
fn=inpaint, | |
inputs=[input_image, prompt_input, width_slider, height_slider, overlap_slider, steps_slider, guidance_slider], | |
outputs=output_image | |
) | |
demo.launch() |