Spaces:
Running
on
Zero
Running
on
Zero
from torch import nn | |
# Effnet 16x16 to 64x64 previewer | |
class Previewer(nn.Module): | |
def __init__(self, c_in=16, c_hidden=512, c_out=3): | |
super().__init__() | |
self.blocks = nn.Sequential( | |
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 36 channels to 512 channels | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden), | |
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1), | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden), | |
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2), # 16 -> 32 | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden//2), | |
nn.Conv2d(c_hidden//2, c_hidden//2, kernel_size=3, padding=1), | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden//2), | |
nn.ConvTranspose2d(c_hidden//2, c_hidden//4, kernel_size=2, stride=2), # 32 -> 64 | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden//4), | |
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1), | |
nn.GELU(), | |
nn.BatchNorm2d(c_hidden//4), | |
nn.Conv2d(c_hidden//4, c_out, kernel_size=1), | |
) | |
def forward(self, x): | |
return self.blocks(x) |