Spaces:
Running
Running
# #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb | |
# #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main | |
import gradio as gr | |
from openai import OpenAI | |
import os | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
client = OpenAI( | |
base_url="https://integrate.api.nvidia.com/v1", | |
api_key=ACCESS_TOKEN, | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat.completions.create( | |
model="nvidia/llama-3.1-nemotron-70b-instruct", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
if token is not None: | |
response += token | |
yield response | |
chatbot = gr.Chatbot(height=600) | |
service = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="top_p", | |
), | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme=gr.themes.Soft(), | |
) | |
if __name__ == "__main__": | |
service.launch() | |