LinCIR / validate.py
Geonmo's picture
initial commit
cacafc1
import json
import pickle
from argparse import ArgumentParser
from typing import List, Dict, Tuple
import clip
import numpy as np
import torch
import torch.nn.functional as F
from clip.model import CLIP
from transformers import CLIPTextModelWithProjection
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
from data_utils import collate_fn, PROJECT_ROOT, targetpad_transform
from loader import FashionIQDataset, CIRRDataset, CIRCODataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
from utils import extract_image_features, device, extract_pseudo_tokens_with_phi
torch.multiprocessing.set_sharing_strategy('file_system')
@torch.no_grad()
def fiq_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[torch.Tensor, List[str]]:
"""
Generates features predictions for the validation set of Fashion IQ.
"""
# Create data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
# Compute features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_captions']
flattened_captions: list = np.array(relative_captions).T.flatten().tolist()
input_captions = [
f"{flattened_captions[i].strip('.?, ')} and {flattened_captions[i + 1].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions_reversed = [
f"{flattened_captions[i + 1].strip('.?, ')} and {flattened_captions[i].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions = [
f"a photo of $ that {in_cap}" for in_cap in input_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
input_captions_reversed = [
f"a photo of $ that {in_cap}" for in_cap in input_captions_reversed]
tokenized_input_captions_reversed = clip.tokenize(input_captions_reversed, context_length=77).to(device)
text_features_reversed = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions_reversed,
batch_tokens)
predicted_features = F.normalize((F.normalize(text_features) + F.normalize(text_features_reversed)) / 2)
# predicted_features = F.normalize((text_features + text_features_reversed) / 2)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list
@torch.no_grad()
def fiq_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names = fiq_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list,
pseudo_tokens)
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
# Compute the distances
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Check if the target names are in the top 10 and top 50
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names)).reshape(len(target_names), -1))
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
return {'fiq_recall_at10': recall_at10,
'fiq_recall_at50': recall_at50}
@torch.no_grad()
def fiq_val_retrieval(dataset_path: str, dress_type: str, image_encoder, text_encoder, ref_names_list: List[str],
pseudo_tokens: torch.Tensor, preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative dataset
relative_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'relative', preprocess)
return fiq_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
@torch.no_grad()
def cirr_generate_val_predictions(clip_model: CLIPTextModelWithProjection, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_generate_val_predictions_with_phi(clip_model: CLIPTextModelWithProjection, phi, relative_val_dataset: Dataset, ref_names_list: List[str],
image_features: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
# we need to make batch_tokens with selected_image_features
selected_image_features = torch.vstack([image_features[ref_names_list.index(ref)] for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
context = clip_model.text_model.embeddings.token_embedding(tokenized_input_captions) + clip_model.text_model.embeddings.position_embedding(clip_model.text_model.embeddings.position_ids)
batch_tokens = phi(selected_image_features, context)
#batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list, pseudo_tokens)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_compute_val_metrics_with_phi(relative_val_dataset: Dataset, clip_model: CLIPTextModelWithProjection, phi, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], image_features: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions_with_phi(clip_model, phi, relative_val_dataset, ref_names_list, image_features)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: list, pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRRDataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRRDataset(dataset_path, 'val', 'relative', preprocess)
return cirr_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names,
ref_names_list, pseudo_tokens)
@torch.no_grad()
def circo_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[
torch.Tensor, List[str], list]:
"""
Generates features predictions for the validation set of CIRCO
"""
# Create the data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
gts_img_ids_list = []
# Compute the features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
gt_img_ids = batch['gt_img_ids']
gt_img_ids = np.array(gt_img_ids).T.tolist()
input_captions = [f"a photo of $ that {caption}" for caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
gts_img_ids_list.extend(gt_img_ids)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list, gts_img_ids_list
@torch.no_grad()
def circo_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names, gts_img_ids = circo_generate_val_predictions(clip_model, relative_val_dataset,
ref_names_list, pseudo_tokens)
ap_at5 = []
ap_at10 = []
ap_at25 = []
ap_at50 = []
recall_at5 = []
recall_at10 = []
recall_at25 = []
recall_at50 = []
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
for predicted_feature, target_name, gt_img_ids in tqdm(zip(predicted_features, target_names, gts_img_ids)):
gt_img_ids = np.array(gt_img_ids)[
np.array(gt_img_ids) != ''] # remove trailing empty strings added for collate_fn
similarity = predicted_feature @ index_features.T
sorted_indices = torch.topk(similarity, dim=-1, k=50).indices.cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
map_labels = torch.tensor(np.isin(sorted_index_names, gt_img_ids), dtype=torch.uint8)
precisions = torch.cumsum(map_labels, dim=0) * map_labels # Consider only positions corresponding to GTs
precisions = precisions / torch.arange(1, map_labels.shape[0] + 1) # Compute precision for each position
ap_at5.append(float(torch.sum(precisions[:5]) / min(len(gt_img_ids), 5)))
ap_at10.append(float(torch.sum(precisions[:10]) / min(len(gt_img_ids), 10)))
ap_at25.append(float(torch.sum(precisions[:25]) / min(len(gt_img_ids), 25)))
ap_at50.append(float(torch.sum(precisions[:50]) / min(len(gt_img_ids), 50)))
assert target_name == gt_img_ids[0], f"Target name not in GTs {target_name} {gt_img_ids}"
single_gt_labels = torch.tensor(sorted_index_names == target_name)
recall_at5.append(float(torch.sum(single_gt_labels[:5])))
recall_at10.append(float(torch.sum(single_gt_labels[:10])))
recall_at25.append(float(torch.sum(single_gt_labels[:25])))
recall_at50.append(float(torch.sum(single_gt_labels[:50])))
map_at5 = np.mean(ap_at5) * 100
map_at10 = np.mean(ap_at10) * 100
map_at25 = np.mean(ap_at25) * 100
map_at50 = np.mean(ap_at50) * 100
recall_at5 = np.mean(recall_at5) * 100
recall_at10 = np.mean(recall_at10) * 100
recall_at25 = np.mean(recall_at25) * 100
recall_at50 = np.mean(recall_at50) * 100
return {
'circo_map_at5': map_at5,
'circo_map_at10': map_at10,
'circo_map_at25': map_at25,
'circo_map_at50': map_at50,
'circo_recall_at5': recall_at5,
'circo_recall_at10': recall_at10,
'circo_recall_at25': recall_at25,
'circo_recall_at50': recall_at50,
}
@torch.no_grad()
def circo_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str], pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRCODataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRCODataset(dataset_path, 'val', 'relative', preprocess)
return circo_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
def main():
parser = ArgumentParser()
parser.add_argument("--exp-name", type=str, help="Experiment to evaluate")
parser.add_argument("--eval-type", type=str, choices=['oti', 'phi', 'searle', 'searle-xl', 'pic2word'], required=True,
help="If 'oti' evaluate directly using the inverted oti pseudo tokens, "
"if 'phi' predicts the pseudo tokens using the phi network, "
"if 'searle' uses the pre-trained SEARLE model to predict the pseudo tokens, "
"if 'searle-xl' uses the pre-trained SEARLE-XL model to predict the pseudo tokens"
)
parser.add_argument("--dataset", type=str, required=True, choices=['cirr', 'fashioniq', 'circo'],
help="Dataset to use")
parser.add_argument("--dataset-path", type=str, help="Path to the dataset", required=True)
parser.add_argument("--preprocess-type", default="clip", type=str, choices=['clip', 'targetpad'],
help="Preprocess pipeline to use")
parser.add_argument("--phi-checkpoint-name", type=str,
help="Phi checkpoint to use, needed when using phi, e.g. 'phi_20.pt'")
parser.add_argument("--clip_model_name", default="giga", type=str)
parser.add_argument("--cache_dir", default="./hf_models", type=str)
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
args = parser.parse_args()
#if args.eval_type in ['phi', 'oti'] and args.exp_name is None:
# raise ValueError("Experiment name is required when using phi or oti evaluation type")
if args.eval_type == 'phi' and args.phi_checkpoint_name is None:
raise ValueError("Phi checkpoint name is required when using phi evaluation type")
if args.eval_type == 'oti':
experiment_path = PROJECT_ROOT / 'data' / "oti_pseudo_tokens" / args.dataset.lower() / 'val' / args.exp_name
if not experiment_path.exists():
raise ValueError(f"Experiment {args.exp_name} not found")
with open(experiment_path / 'hyperparameters.json') as f:
hyperparameters = json.load(f)
pseudo_tokens = torch.load(experiment_path / 'ema_oti_pseudo_tokens.pt', map_location=device)
with open(experiment_path / 'image_names.pkl', 'rb') as f:
ref_names_list = pickle.load(f)
clip_model_name = hyperparameters['clip_model_name']
clip_model, clip_preprocess = clip.load(clip_model_name, device='cpu', jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
elif args.eval_type in ['phi', 'searle', 'searle-xl', 'pic2word']:
if args.eval_type == 'phi':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=0.5).to(
device)
phi.load_state_dict(
torch.load(args.phi_checkpoint_name, map_location=device)[
phi.__class__.__name__])
phi = phi.eval()
elif args.eval_type == 'pic2word':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = PIC2WORD(embed_dim=text_encoder.config.projection_dim,
output_dim=text_encoder.config.hidden_size,
).to(device)
sd = torch.load(args.phi_checkpoint_name, map_location=device)['state_dict_img2text']
sd = {k[len('module.'):]: v for k, v in sd.items()}
phi.load_state_dict(sd)
phi = phi.eval()
else: # searle or searle-xl
if args.eval_type == 'searle':
clip_model_name = 'ViT-B/32'
else: # args.eval_type == 'searle-xl':
clip_model_name = 'ViT-L/14'
phi, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
backbone=clip_model_name)
phi = phi.to(device).eval()
clip_model, clip_preprocess = clip.load(clip_model_name, device=device, jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
if args.dataset.lower() == 'fashioniq':
relative_val_dataset = FashionIQDataset(args.dataset_path, 'val', ['dress', 'toptee', 'shirt'],
'relative', preprocess, no_duplicates=True)
elif args.dataset.lower() == 'cirr':
relative_val_dataset = CIRRDataset(args.dataset_path, 'val', 'relative', preprocess,
no_duplicates=True)
elif args.dataset.lower() == 'circo':
relative_val_dataset = CIRCODataset(args.dataset_path, 'val', 'relative', preprocess)
else:
raise ValueError("Dataset not supported")
#clip_model = clip_model.float().to(device)
image_encoder = image_encoder.float().to(device)
text_encoder = text_encoder.float().to(device)
pseudo_tokens, ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi, relative_val_dataset, args)
pseudo_tokens = pseudo_tokens.to(device)
else:
raise ValueError("Eval type not supported")
print(f"Eval type = {args.eval_type} \t exp name = {args.exp_name} \t")
if args.dataset.lower() == 'fashioniq':
recalls_at10 = []
recalls_at50 = []
for dress_type in ['shirt', 'dress', 'toptee']:
fiq_metrics = fiq_val_retrieval(args.dataset_path, dress_type, image_encoder, text_encoder, ref_names_list,
pseudo_tokens, preprocess)
recalls_at10.append(fiq_metrics['fiq_recall_at10'])
recalls_at50.append(fiq_metrics['fiq_recall_at50'])
for k, v in fiq_metrics.items():
print(f"{dress_type}_{k} = {v:.2f}")
print("\n")
print(f"average_fiq_recall_at10 = {np.mean(recalls_at10):.2f}")
print(f"average_fiq_recall_at50 = {np.mean(recalls_at50):.2f}")
elif args.dataset.lower() == 'cirr':
cirr_metrics = cirr_val_retrieval(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
preprocess)
for k, v in cirr_metrics.items():
print(f"{k} = {v:.2f}")
elif args.dataset.lower() == 'circo':
circo_metrics = circo_val_retrieval(args.dataset_path, clip_model_name, ref_names_list, pseudo_tokens,
preprocess)
for k, v in circo_metrics.items():
print(f"{k} = {v:.2f}")
if __name__ == '__main__':
main()