MLSD / utils.py
geonmo.gu
initial commit
221e607
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
import os
import numpy as np
import cv2
import tensorflow as tf
def pred_lines(image, interpreter, input_details, output_details, input_shape=[512, 512], score_thr=0.10, dist_thr=20.0):
h, w, _ = image.shape
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
interpreter.set_tensor(input_details[0]['index'], batch_image)
interpreter.invoke()
pts = interpreter.get_tensor(output_details[0]['index'])[0]
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
start = vmap[:,:,:2]
end = vmap[:,:,2:]
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
segments_list = []
for center, score in zip(pts, pts_score):
y, x = center
distance = dist_map[y, x]
if score > score_thr and distance > dist_thr:
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
x_start = x + disp_x_start
y_start = y + disp_y_start
x_end = x + disp_x_end
y_end = y + disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
lines = 2 * np.array(segments_list) # 256 > 512
lines[:,0] = lines[:,0] * w_ratio
lines[:,1] = lines[:,1] * h_ratio
lines[:,2] = lines[:,2] * w_ratio
lines[:,3] = lines[:,3] * h_ratio
return lines
def pred_squares(image,
interpreter,
input_details,
output_details,
input_shape=[512, 512],
params={'score': 0.06,
'outside_ratio': 0.28,
'inside_ratio': 0.45,
'w_overlap': 0.0,
'w_degree': 1.95,
'w_length': 0.0,
'w_area': 1.86,
'w_center': 0.14}):
h, w, _ = image.shape
original_shape = [h, w]
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
interpreter.set_tensor(input_details[0]['index'], batch_image)
interpreter.invoke()
pts = interpreter.get_tensor(output_details[0]['index'])[0]
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
start = vmap[:,:,:2] # (x, y)
end = vmap[:,:,2:] # (x, y)
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
junc_list = []
segments_list = []
for junc, score in zip(pts, pts_score):
y, x = junc
distance = dist_map[y, x]
if score > params['score'] and distance > 20.0:
junc_list.append([x, y])
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
d_arrow = 1.0
x_start = x + d_arrow * disp_x_start
y_start = y + d_arrow * disp_y_start
x_end = x + d_arrow * disp_x_end
y_end = y + d_arrow * disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
segments = np.array(segments_list)
####### post processing for squares
# 1. get unique lines
point = np.array([[0, 0]])
point = point[0]
start = segments[:,:2]
end = segments[:,2:]
diff = start - end
a = diff[:, 1]
b = -diff[:, 0]
c = a * start[:,0] + b * start[:,1]
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
theta = np.arctan2(diff[:,0], diff[:,1]) * 180 / np.pi
theta[theta < 0.0] += 180
hough = np.concatenate([d[:,None], theta[:,None]], axis=-1)
d_quant = 1
theta_quant = 2
hough[:,0] //= d_quant
hough[:,1] //= theta_quant
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
yx_indices = hough[indices,:].astype('int32')
acc_map[yx_indices[:,0], yx_indices[:,1]] = counts
idx_map[yx_indices[:,0], yx_indices[:,1]] = indices
acc_map_np = acc_map
acc_map = acc_map[None,:,:,None]
### fast suppression using tensorflow op
acc_map = tf.constant(acc_map, dtype=tf.float32)
max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5,5), strides=1, padding='same')(acc_map)
acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
flatten_acc_map = tf.reshape(acc_map, [1, -1])
topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
_, h, w, _ = acc_map.shape
y = tf.expand_dims(topk_indices // w, axis=-1)
x = tf.expand_dims(topk_indices % w, axis=-1)
yx = tf.concat([y, x], axis=-1)
###
yx = yx[0].numpy()
indices = idx_map[yx[:,0], yx[:,1]]
topk_values = topk_values.numpy()[0]
basis = 5 // 2
merged_segments = []
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
y, x = yx_pt
if max_indice == -1 or value == 0:
continue
segment_list = []
for y_offset in range(-basis, basis+1):
for x_offset in range(-basis, basis+1):
indice = idx_map[y+y_offset,x+x_offset]
cnt = int(acc_map_np[y+y_offset,x+x_offset])
if indice != -1:
segment_list.append(segments[indice])
if cnt > 1:
check_cnt = 1
current_hough = hough[indice]
for new_indice, new_hough in enumerate(hough):
if (current_hough == new_hough).all() and indice != new_indice:
segment_list.append(segments[new_indice])
check_cnt += 1
if check_cnt == cnt:
break
group_segments = np.array(segment_list).reshape([-1, 2])
sorted_group_segments = np.sort(group_segments, axis=0)
x_min, y_min = sorted_group_segments[0,:]
x_max, y_max = sorted_group_segments[-1,:]
deg = theta[max_indice]
if deg >= 90:
merged_segments.append([x_min, y_max, x_max, y_min])
else:
merged_segments.append([x_min, y_min, x_max, y_max])
# 2. get intersections
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
start = new_segments[:,:2] # (x1, y1)
end = new_segments[:,2:] # (x2, y2)
new_centers = (start + end) / 2.0
diff = start - end
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
# ax + by = c
a = diff[:,1]
b = -diff[:,0]
c = a * start[:,0] + b * start[:,1]
pre_det = a[:,None] * b[None,:]
det = pre_det - np.transpose(pre_det)
pre_inter_y = a[:,None] * c[None,:]
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
pre_inter_x = c[:,None] * b[None,:]
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
inter_pts = np.concatenate([inter_x[:,:,None], inter_y[:,:,None]], axis=-1).astype('int32')
# 3. get corner information
# 3.1 get distance
'''
dist_segments:
| dist(0), dist(1), dist(2), ...|
dist_inter_to_segment1:
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
...
dist_inter_to_semgnet2:
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
...
'''
dist_inter_to_segment1_start = np.sqrt(np.sum(((inter_pts - start[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment1_end = np.sqrt(np.sum(((inter_pts - end[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_start = np.sqrt(np.sum(((inter_pts - start[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_end = np.sqrt(np.sum(((inter_pts - end[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
# sort ascending
dist_inter_to_segment1 = np.sort(np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
dist_inter_to_segment2 = np.sort(np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
# 3.2 get degree
inter_to_start = new_centers[:,None,:] - inter_pts
deg_inter_to_start = np.arctan2(inter_to_start[:,:,1], inter_to_start[:,:,0]) * 180 / np.pi
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
inter_to_end = new_centers[None,:,:] - inter_pts
deg_inter_to_end = np.arctan2(inter_to_end[:,:,1], inter_to_end[:,:,0]) * 180 / np.pi
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
'''
0 -- 1
| |
3 -- 2
'''
# rename variables
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
# sort deg ascending
deg_sort = np.sort(np.concatenate([deg1_map[:,:,None], deg2_map[:,:,None]], axis=-1), axis=-1)
deg_diff_map = np.abs(deg1_map - deg2_map)
# we only consider the smallest degree of intersect
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
# define available degree range
deg_range = [60, 120]
corner_dict = {corner_info: [] for corner_info in range(4)}
inter_points = []
for i in range(inter_pts.shape[0]):
for j in range(i + 1, inter_pts.shape[1]):
# i, j > line index, always i < j
x, y = inter_pts[i, j, :]
deg1, deg2 = deg_sort[i, j, :]
deg_diff = deg_diff_map[i, j]
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
check_distance = ((dist_inter_to_segment1[i,j,1] >= dist_segments[i] and \
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * outside_ratio) or \
(dist_inter_to_segment1[i,j,1] <= dist_segments[i] and \
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * inside_ratio)) and \
((dist_inter_to_segment2[i,j,1] >= dist_segments[j] and \
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * outside_ratio) or \
(dist_inter_to_segment2[i,j,1] <= dist_segments[j] and \
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * inside_ratio))
if check_degree and check_distance:
corner_info = None
if (deg1 >= 0 and deg1 <= 45 and deg2 >=45 and deg2 <= 120) or \
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
corner_info, color_info = 0, 'blue'
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
corner_info, color_info = 1, 'green'
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
corner_info, color_info = 2, 'black'
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
corner_info, color_info = 3, 'cyan'
else:
corner_info, color_info = 4, 'red' # we don't use it
continue
corner_dict[corner_info].append([x, y, i, j])
inter_points.append([x, y])
square_list = []
connect_list = []
segments_list = []
for corner0 in corner_dict[0]:
for corner1 in corner_dict[1]:
connect01 = False
for corner0_line in corner0[2:]:
if corner0_line in corner1[2:]:
connect01 = True
break
if connect01:
for corner2 in corner_dict[2]:
connect12 = False
for corner1_line in corner1[2:]:
if corner1_line in corner2[2:]:
connect12 = True
break
if connect12:
for corner3 in corner_dict[3]:
connect23 = False
for corner2_line in corner2[2:]:
if corner2_line in corner3[2:]:
connect23 = True
break
if connect23:
for corner3_line in corner3[2:]:
if corner3_line in corner0[2:]:
# SQUARE!!!
'''
0 -- 1
| |
3 -- 2
square_list:
order: 0 > 1 > 2 > 3
| x0, y0, x1, y1, x2, y2, x3, y3 |
| x0, y0, x1, y1, x2, y2, x3, y3 |
...
connect_list:
order: 01 > 12 > 23 > 30
| line_idx01, line_idx12, line_idx23, line_idx30 |
| line_idx01, line_idx12, line_idx23, line_idx30 |
...
segments_list:
order: 0 > 1 > 2 > 3
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
...
'''
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
def check_outside_inside(segments_info, connect_idx):
# return 'outside or inside', min distance, cover_param, peri_param
if connect_idx == segments_info[0]:
check_dist_mat = dist_inter_to_segment1
else:
check_dist_mat = dist_inter_to_segment2
i, j = segments_info
min_dist, max_dist = check_dist_mat[i, j, :]
connect_dist = dist_segments[connect_idx]
if max_dist > connect_dist:
return 'outside', min_dist, 0, 1
else:
return 'inside', min_dist, -1, -1
top_square = None
try:
map_size = input_shape[0] / 2
squares = np.array(square_list).reshape([-1,4,2])
score_array = []
connect_array = np.array(connect_list)
segments_array = np.array(segments_list).reshape([-1,4,2])
# get degree of corners:
squares_rollup = np.roll(squares, 1, axis=1)
squares_rolldown = np.roll(squares, -1, axis=1)
vec1 = squares_rollup - squares
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
vec2 = squares_rolldown - squares
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
# get square score
overlap_scores = []
degree_scores = []
length_scores = []
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
'''
0 -- 1
| |
3 -- 2
# segments: [4, 2]
# connects: [4]
'''
###################################### OVERLAP SCORES
cover = 0
perimeter = 0
# check 0 > 1 > 2 > 3
square_length = []
for start_idx in range(4):
end_idx = (start_idx + 1) % 4
connect_idx = connects[start_idx] # segment idx of segment01
start_segments = segments[start_idx]
end_segments = segments[end_idx]
start_point = square[start_idx]
end_point = square[end_idx]
# check whether outside or inside
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, connect_idx)
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
square_length.append(dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
overlap_scores.append(cover / perimeter)
######################################
###################################### DEGREE SCORES
'''
deg0 vs deg2
deg1 vs deg3
'''
deg0, deg1, deg2, deg3 = degree
deg_ratio1 = deg0 / deg2
if deg_ratio1 > 1.0:
deg_ratio1 = 1 / deg_ratio1
deg_ratio2 = deg1 / deg3
if deg_ratio2 > 1.0:
deg_ratio2 = 1 / deg_ratio2
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
######################################
###################################### LENGTH SCORES
'''
len0 vs len2
len1 vs len3
'''
len0, len1, len2, len3 = square_length
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
length_scores.append((len_ratio1 + len_ratio2) / 2)
######################################
overlap_scores = np.array(overlap_scores)
overlap_scores /= np.max(overlap_scores)
degree_scores = np.array(degree_scores)
#degree_scores /= np.max(degree_scores)
length_scores = np.array(length_scores)
###################################### AREA SCORES
area_scores = np.reshape(squares, [-1, 4, 2])
area_x = area_scores[:,:,0]
area_y = area_scores[:,:,1]
correction = area_x[:,-1] * area_y[:,0] - area_y[:,-1] * area_x[:,0]
area_scores = np.sum(area_x[:,:-1] * area_y[:,1:], axis=-1) - np.sum(area_y[:,:-1] * area_x[:,1:], axis=-1)
area_scores = 0.5 * np.abs(area_scores + correction)
area_scores /= (map_size * map_size) #np.max(area_scores)
######################################
###################################### CENTER SCORES
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
# squares: [n, 4, 2]
square_centers = np.mean(squares, axis=1) # [n, 2]
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
center_scores = center2center / (map_size / np.sqrt(2.0))
'''
score_w = [overlap, degree, area, center, length]
'''
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
score_array = params['w_overlap'] * overlap_scores \
+ params['w_degree'] * degree_scores \
+ params['w_area'] * area_scores \
- params['w_center'] * center_scores \
+ params['w_length'] * length_scores
best_square = []
sorted_idx = np.argsort(score_array)[::-1]
score_array = score_array[sorted_idx]
squares = squares[sorted_idx]
except Exception as e:
pass
try:
new_segments[:,0] = new_segments[:,0] * 2 / input_shape[1] * original_shape[1]
new_segments[:,1] = new_segments[:,1] * 2 / input_shape[0] * original_shape[0]
new_segments[:,2] = new_segments[:,2] * 2 / input_shape[1] * original_shape[1]
new_segments[:,3] = new_segments[:,3] * 2 / input_shape[0] * original_shape[0]
except:
new_segments = []
try:
squares[:,:,0] = squares[:,:,0] * 2 / input_shape[1] * original_shape[1]
squares[:,:,1] = squares[:,:,1] * 2 / input_shape[0] * original_shape[0]
except:
squares = []
score_array = []
try:
inter_points = np.array(inter_points)
inter_points[:,0] = inter_points[:,0] * 2 / input_shape[1] * original_shape[1]
inter_points[:,1] = inter_points[:,1] * 2 / input_shape[0] * original_shape[0]
except:
inter_points = []
return new_segments, squares, score_array, inter_points