Nick Bolton
first commit
6b2a6c2
raw
history blame
6.46 kB
from datetime import date
from datetime import datetime
import re
import numpy as np
import pandas as pd
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
import time
from plotly.subplots import make_subplots
# Read CSV file into pandas and extract timestamp data
dfSentiment = pd.read_csv('data/sentiment_data.csv')
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]
# Multi-select columns to build chart
col_list = dfSentiment.columns.tolist()
r_sentiment = re.compile(".*sentiment")
sentiment_cols = list(filter(r_sentiment.match, col_list))
r_post = re.compile(".*post")
post_list = list(filter(r_post.match, col_list))
r_perc= re.compile(".*perc")
perc_list = list(filter(r_perc.match, col_list))
r_close = re.compile(".*close")
close_list = list(filter(r_close.match, col_list))
r_volume = re.compile(".*volume")
volume_list = list(filter(r_volume.match, col_list))
sentiment_cols = sentiment_cols + post_list
stocks_cols = close_list + volume_list
# Config for page
st.set_page_config(
page_title="Tesla Reddit Sentiment",
page_icon='✅',
layout='wide',
)
with st.sidebar:
# FourthBrain logo to sidebar
fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
st.image([fourthbrain_logo], width=300)
# Date selection filters
start_date_filter = st.date_input(
'Start Date',
min(dfSentiment['timestamp']),
min_value=min(dfSentiment['timestamp']),
max_value=max(dfSentiment['timestamp'])
)
end_date_filter = st.date_input(
'End Date',
max(dfSentiment['timestamp']),
min_value=min(dfSentiment['timestamp']),
max_value=max(dfSentiment['timestamp'])
)
sentiment_select = st.selectbox("Sentiment", sentiment_cols)
stock_select = st.selectbox("Stock", stocks_cols)
# Banner with TSLA and Reddit images
company_logo = Image.open('./images/tsla_logo.png')
reddit_logo = Image.open('./images/reddit_logo.png')
st.image([company_logo, reddit_logo], width=200)
# dashboard title
st.title("Tesla Reddit Sentiment and Stock Price")
## dataframe filter
# start date
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
# end date
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)]
dfSentiment = dfSentiment.reset_index(drop=True)
# creating a single-element container
placeholder = st.empty()
# near real-time / live feed simulation
for i in range(1, len(dfSentiment)-1):
# creating KPIs
last_close = dfSentiment['close'][i]
last_close_lag1 = dfSentiment['close'][i-1]
last_sentiment = dfSentiment['sentiment_score'][i-1]
last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1]
with placeholder.container():
# create columns
kpi1, kpi2, kpi3 = st.columns(3)
# fill in those three columns with respective metrics or KPIs
kpi1.metric(
label='Sentiment Score',
value=round(last_sentiment, 3),
delta=round(last_sentiment_lag1, 3),
)
kpi2.metric(
label='Last Closing Price',
value=round(last_close, 3),
delta=round(last_close_lag1, 3),
)
# create two columns for charts
fig_col1, fig_col2 = st.columns(2)
with fig_col1:
# Add traces
fig=make_subplots(specs=[[{"secondary_y":True}]])
fig.add_trace(
go.Scatter(
x=dfSentiment['timestamp'][0:i],
y=dfSentiment[sentiment_select][0:i],
name=sentiment_select,
mode='lines',
hoverinfo='none',
)
)
if sentiment_select.startswith('perc') == True:
y_axis_label = 'Percentage'
elif sentiment_select in sentiment_cols:
y_axis_label = 'Sentiment'
elif sentiment_select in post_list:
y_axis_label = 'Volume'
fig.layout.yaxis.title=y_axis_label
if stock_select.startswith('perc') == True:
fig.add_trace(
go.Scatter(
x=dfSentiment['timestamp'][0:i],
y=dfSentiment[stock_select][0:i],
name=stock_select,
mode='lines',
hoverinfo='none',
yaxis='y2',
)
)
fig.layout.yaxis2.title='% Change Stock Price ($US)'
elif stock_select == 'volume':
fig.add_trace(
go.Scatter(
x=dfSentiment['timestamp'][0:i],
y=dfSentiment[stock_select][0:i],
name=stock_select,
mode='lines',
hoverinfo='none',
yaxis='y2',
)
)
fig.layout.yaxis2.title="Shares Traded"
else:
fig.add_trace(
go.Scatter(
x=dfSentiment['timestamp'][0:i],
y=dfSentiment[stock_select][0:i],
name=stock_select,
mode='lines',
hoverinfo='none',
yaxis='y2',
)
)
fig.layout.yaxis2.title='Stock Price ($USD)'
fig.layout.xaxis.title='Timestamp'
# write the figure throught streamlit
st.write(fig)
st.markdown('### Detailed Data View')
st.dataframe(dfSentiment.iloc[:, 1:][0:i], width=500)
time.sleep(1)