File size: 7,795 Bytes
228a778 74fb5a4 de777bc 8ed452a 74fb5a4 8ed452a 74fb5a4 8ed452a 74fb5a4 785de28 731983b 785de28 731983b 785de28 731983b 785de28 731983b 785de28 1994e95 785de28 1994e95 785de28 de777bc 785de28 e8710db 1994e95 de777bc 74fb5a4 785de28 408933e de777bc 785de28 de777bc 408933e de777bc 785de28 de777bc 408933e de777bc 408933e de777bc 785de28 408933e 785de28 408933e 785de28 408933e e8710db de777bc 74fb5a4 785de28 62873b7 785de28 62873b7 785de28 62873b7 8ed452a 62873b7 74fb5a4 8ed452a 74fb5a4 785de28 ca568da 785de28 a05253c de777bc 785de28 62873b7 785de28 62873b7 785de28 a05253c 785de28 74fb5a4 ca568da a05253c 74fb5a4 e8710db 74fb5a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import torch
import cv2
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from transformers import pipeline
import gradio as gr
from sklearn.cluster import KMeans
from colorsys import rgb_to_hsv
from huggingface_hub import InferenceClient # Import InferenceClient for API calls
# Initialize the emotion detection pipeline for text (if any text is included in assets)
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
# Initialize the Hugging Face API client with your Space model ID
client = InferenceClient("nehapasricha94/LLaVA-image-analysis")
# Function to analyze colors in an image
def analyze_colors(image):
try:
# Ensure the image is in RGB format
if image.mode != "RGB":
image = image.convert("RGB")
# Resize the image for faster processing
image = image.resize((150, 150))
# Convert to numpy array
img_array = np.array(image)
# Reshape image to be a list of pixels
pixels = img_array.reshape((-1, 3))
kmeans = KMeans(n_clusters=5, random_state=0)
kmeans.fit(pixels)
dominant_colors = kmeans.cluster_centers_
# Plot the colors for visualization
plt.figure(figsize=(8, 6))
plt.imshow([dominant_colors.astype(int)])
plt.axis('off')
plt.show()
return dominant_colors
except Exception as e:
print(f"Error in analyze_colors: {e}")
return None
# Function to analyze emotions based on color (hue, brightness, saturation) and stress with weights
def color_emotion_analysis(dominant_colors):
try:
emotions = []
stress_levels = []
# Weight coefficients for each factor
brightness_weight = 0.5
hue_weight = 0.3
saturation_weight = 0.2
for color in dominant_colors:
# Normalize RGB values to 0-1 range
r, g, b = color / 255.0
# Convert RGB to HSV
h, s, v = rgb_to_hsv(r, g, b) # Hue, Saturation, Value (brightness)
# Calculate weighted emotion and stress levels
weighted_brightness = v * brightness_weight
weighted_hue = h * hue_weight
weighted_saturation = s * saturation_weight
# Combine weighted factors
score = weighted_brightness + weighted_hue + weighted_saturation
# Analyze emotion and stress based on combined score
if score < 0.3: # Lower combined score, less rigid "high stress"
emotions.append("Sadness")
stress_levels.append("Moderate-High Stress")
elif 0.3 <= score < 0.5:
emotions.append("Neutral")
stress_levels.append("Moderate Stress")
elif 0.5 <= score < 0.7:
emotions.append("Okay")
stress_levels.append("Low Stress")
elif 0.7 <= score < 0.85:
emotions.append("Happiness")
stress_levels.append("Very Low Stress")
else:
emotions.append("Very Happy")
stress_levels.append("No Stress")
return emotions, stress_levels
except Exception as e:
print(f"Error in color_emotion_analysis: {e}")
return ["Error analyzing emotions"], ["Error analyzing stress levels"]
# Function to analyze patterns and shapes using OpenCV
def analyze_patterns(image):
try:
# Convert to grayscale for edge detection
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray_image, 100, 200)
# Calculate the number of edges (chaos metric)
num_edges = np.sum(edges > 0)
if num_edges > 10000: # Arbitrary threshold for "chaos"
return "Chaotic patterns - possibly distress", 0.8 # Assigning 0.8 stress for chaotic patterns
else:
return "Orderly patterns - possibly calm", 0.2 # Assigning 0.2 stress for calm patterns
except Exception as e:
print(f"Error in analyze_patterns: {e}")
return "Error analyzing patterns", 0.5 # Assigning neutral weight for errors
# Function to compute overall results by combining color and pattern analyses
def compute_overall_result(color_emotions, stress_levels, pattern_analysis, pattern_stress):
try:
# Assigning weightage to different factors
color_emotion_weight = 0.5 # 50% for color-based emotions and stress
pattern_weight = 0.5 # 50% for pattern analysis
# Determine the most common emotion from colors
dominant_emotion = max(set(color_emotions), key=color_emotions.count)
# Average stress level from color analysis (converting text stress levels to numeric)
stress_mapping = {
"No Stress": 0.1,
"Very Low Stress": 0.3,
"Low Stress": 0.5,
"Moderate Stress": 0.7,
"Moderate-High Stress": 0.9,
}
color_stress_numeric = [stress_mapping[stress] for stress in stress_levels if stress in stress_mapping]
avg_color_stress = np.mean(color_stress_numeric) if color_stress_numeric else 0.5 # Default to 0.5 if no valid data
# Compute the overall stress by combining color stress and pattern stress
overall_stress = (avg_color_stress * color_emotion_weight) + (pattern_stress * pattern_weight)
# Determine overall result based on combined factors
if overall_stress < 0.3:
overall_emotion = "Calm and Relaxed"
elif 0.3 <= overall_stress < 0.6:
overall_emotion = "Neutral Mood"
elif 0.6 <= overall_stress < 0.8:
overall_emotion = "Slightly Stressed"
else:
overall_emotion = "Highly Stressed"
return f"Overall emotion: {overall_emotion} (Dominant Color Emotion: {dominant_emotion}, Pattern Analysis: {pattern_analysis})"
except Exception as e:
return f"Error computing overall result: {str(e)}"
# Function to analyze emotions from a given text (if applicable)
def analyze_emotion_from_text(text):
try:
# Using the local emotion classifier
emotion_scores = emotion_classifier(text)
dominant_emotion = max(emotion_scores, key=lambda x: x['score'])
return f"Detected emotion from text: {dominant_emotion['label']} with score: {dominant_emotion['score']:.2f}"
except Exception as e:
print(f"Error analyzing emotion from text: {e}")
return "Error analyzing text emotion"
# Main function to process image and analyze emotional expression
def analyze_emotion_from_image(image):
try:
# Ensure the input image is a PIL image
if isinstance(image, np.ndarray):
image = Image.fromarray(image) # Convert to PIL Image if it's a NumPy array
# Analyze colors
dominant_colors = analyze_colors(image)
if dominant_colors is None:
return "Error analyzing colors"
color_emotions, stress_levels = color_emotion_analysis(dominant_colors)
# Analyze patterns
pattern_analysis, pattern_stress = analyze_patterns(image)
# Compute overall result
overall_result = compute_overall_result(color_emotions, stress_levels, pattern_analysis, pattern_stress)
return overall_result
except Exception as e:
print(f"Error processing image: {str(e)}")
return f"Error processing image: {str(e)}"
# Gradio interface to upload image files and perform analysis
iface = gr.Interface(fn=analyze_emotion_from_image, inputs="image", outputs="text")
# Launch the interface
if __name__ == "__main__":
iface.launch()
|