Spaces:
Runtime error
Runtime error
[English](https://github.com/megvii-research/CoNR/blob/main/README.md) | [中文](https://github.com/megvii-research/CoNR/blob/main/README_chinese.md) | |
# CoNR: Collaborative Neural Rendering using Anime Character Sheets | |
## [HomePage](https://conr.ml) | Colab [English](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/conr.ipynb)/[中文](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/conr_chinese.ipynb) | [arXiv](https://arxiv.org/abs/2207.05378) | |
![image](images/MAIN.png) | |
## Introduction | |
This project is the official implement of [Collaborative Neural Rendering using Anime Character Sheets](https://arxiv.org/abs/2207.05378), which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our [HomePage](https://conr.ml). | |
Contributors: [@transpchan](https://github.com/transpchan/), [@P2Oileen](https://github.com/P2Oileen), [@hzwer](https://github.com/hzwer) | |
## Usage | |
#### Prerequisites | |
* NVIDIA GPU + CUDA + CUDNN | |
* Python 3.6 | |
#### Installation | |
* Clone this repository | |
```bash | |
git clone https://github.com/megvii-research/CoNR | |
``` | |
* Dependencies | |
To install all the dependencies, please run the following commands. | |
```bash | |
cd CoNR | |
pip install -r requirements.txt | |
``` | |
* Download Weights | |
Download weights from Google Drive. Alternatively, you can download from [Baidu Netdisk](https://pan.baidu.com/s/1U11iIk-DiJodgCveSzB6ig?pwd=RDxc) (password:RDxc). | |
``` | |
mkdir weights && cd weights | |
gdown https://drive.google.com/uc?id=1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx | |
gdown https://drive.google.com/uc?id=1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0 | |
gdown https://drive.google.com/uc?id=1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i | |
gdown https://drive.google.com/uc?id=19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm | |
``` | |
#### Prepare inputs | |
We prepared two Ultra-Dense Pose sequences for two characters. You can generate more UDPs via 3D models and motions refers to [our paper](ttps://arxiv.org/abs/2207.05378). | |
[Baidu Netdisk](https://pan.baidu.com/s/1hWvz4iQXnVTaTSb6vu1NBg?pwd=RDxc) (password:RDxc) | |
``` | |
# for short hair girl | |
gdown https://drive.google.com/uc?id=11HMSaEkN__QiAZSnCuaM6GI143xo62KO | |
unzip short_hair.zip | |
mv short_hair/ poses/ | |
# for double ponytail girl | |
gdown https://drive.google.com/uc?id=1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q | |
unzip double_ponytail.zip | |
mv double_ponytail/ poses/ | |
``` | |
We provide sample inputs of anime character sheets. You can also draw more by yourself. | |
Character sheets need to be cut out from the background and in png format. | |
[Baidu Netdisk](https://pan.baidu.com/s/1shpP90GOMeHke7MuT0-Txw?pwd=RDxc) (password:RDxc) | |
``` | |
# for short hair girl | |
gdown https://drive.google.com/uc?id=1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT | |
unzip short_hair_images.zip | |
mv short_hair_images/ character_sheet/ | |
# for double ponytail girl | |
gdown https://drive.google.com/uc?id=1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc | |
unzip double_ponytail_images.zip | |
mv double_ponytail_images/ character_sheet/ | |
``` | |
#### RUN! | |
We provide two ways: with web UI or via terminal. | |
* with web UI (powered by [Streamlit](https://streamlit.io/)) | |
``` | |
streamlit run streamlit.py --server_port=8501 | |
``` | |
then open your browser and visit `localhost:8501`, follow the instructions to genarate video. | |
* via terminal | |
``` | |
mkdir {dir_to_save_result} | |
python -m torch.distributed.launch \ | |
--nproc_per_node=1 train.py --mode=test \ | |
--world_size=1 --dataloaders=2 \ | |
--test_input_poses_images={dir_to_poses} \ | |
--test_input_person_images={dir_to_character_sheet} \ | |
--test_output_dir={dir_to_save_result} \ | |
--test_checkpoint_dir={dir_to_weights} | |
ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30 | |
``` | |
## Citation | |
```bibtex | |
@article{lin2022conr, | |
title={Collaborative Neural Rendering using Anime Character Sheets}, | |
author={Lin, Zuzeng and Huang, Ailin and Huang, Zhewei and Hu, Chen and Zhou, Shuchang}, | |
journal={arXiv preprint arXiv:2207.05378}, | |
year={2022} | |
} | |
``` | |