DeepDetect / inference_2.py
nimocodes's picture
Update inference_2.py
4abab34 verified
raw
history blame
6.33 kB
import os
import cv2
import onnx
import torch
import argparse
import numpy as np
import torch.nn as nn
from models.TMC import ETMC
from models import image
from onnx2pytorch import ConvertModel
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
pytorch_model = ConvertModel(onnx_model)
torch.manual_seed(42)
audio_args = {
'nb_samp': 64600,
'first_conv': 1024,
'in_channels': 1,
'filts': [20, [20, 20], [20, 128], [128, 128]],
'blocks': [2, 4],
'nb_fc_node': 1024,
'gru_node': 1024,
'nb_gru_layer': 3,
'nb_classes': 2
}
def get_args(parser):
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
parser.add_argument("--LOAD_SIZE", type=int, default=256)
parser.add_argument("--FINE_SIZE", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hidden", nargs="*", type=int, default=[])
parser.add_argument("--hidden_sz", type=int, default=768)
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
parser.add_argument("--img_hidden_sz", type=int, default=1024)
parser.add_argument("--include_bn", type=int, default=True)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_factor", type=float, default=0.3)
parser.add_argument("--lr_patience", type=int, default=10)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--n_workers", type=int, default=12)
parser.add_argument("--name", type=str, default="MMDF")
parser.add_argument("--num_image_embeds", type=int, default=1)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--savedir", type=str, default="./savepath/")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_classes", type=int, default=2)
parser.add_argument("--annealing_epoch", type=int, default=10)
parser.add_argument("--device", type=str, default='cpu')
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
parser.add_argument("--augment_dataset", type = bool, default = True)
for key, value in audio_args.items():
parser.add_argument(f"--{key}", type=type(value), default=value)
def load_img_modality_model(args):
rgb_encoder = pytorch_model
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
rgb_encoder.eval()
return rgb_encoder
def load_spec_modality_model(args):
spec_encoder = image.RawNet(args)
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
spec_encoder.eval()
return spec_encoder
parser = argparse.ArgumentParser(description="Inference models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args
spec_model = load_spec_modality_model(args)
img_model = load_img_modality_model(args)
def preprocess_img(face):
face = face / 255
face = cv2.resize(face, (256, 256))
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
return face_pt
def preprocess_audio(audio_file):
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
return audio_pt
def df_spec_pred(input_audio):
x, _ = input_audio
audio = preprocess_audio(x)
spec_grads = spec_model.forward(audio)
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
max_value = np.argmax(spec_grads_inv)
if max_value > 0.5:
preds = round(100 - (max_value*100), 3)
text2 = f"The audio is REAL."
else:
preds = round(max_value*100, 3)
text2 = f"The audio is FAKE."
return text2
def df_img_pred(input_image):
face = preprocess_img(input_image)
print(f"Face shape is: {face.shape}")
img_grads = img_model.forward(face)
img_grads = img_grads.cpu().detach().numpy()
img_grads_np = np.squeeze(img_grads)
if img_grads_np[0] > 0.5:
preds = round(img_grads_np[0] * 100, 3)
text2 = f"The image is REAL. \nConfidence score is: {preds}"
else:
preds = round(img_grads_np[1] * 100, 3)
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
return text2
def preprocess_video(input_video, n_frames = 3):
v_cap = cv2.VideoCapture(input_video)
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Pick 'n_frames' evenly spaced frames to sample
if n_frames is None:
sample = np.arange(0, v_len)
else:
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
#Loop through frames.
frames = []
for j in range(v_len):
success = v_cap.grab()
if j in sample:
# Load frame
success, frame = v_cap.retrieve()
if not success:
continue
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = preprocess_img(frame)
frames.append(frame)
v_cap.release()
return frames
def df_video_pred(input_video):
video_frames = preprocess_video(input_video)
real_faces_list = []
fake_faces_list = []
for face in video_frames:
img_grads = img_model.forward(face)
img_grads = img_grads.cpu().detach().numpy()
img_grads_np = np.squeeze(img_grads)
real_faces_list.append(img_grads_np[0])
fake_faces_list.append(img_grads_np[1])
real_faces_mean = np.mean(real_faces_list)
fake_faces_mean = np.mean(fake_faces_list)
if real_faces_mean > 0.5:
preds = round(real_faces_mean * 100, 3)
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
else:
preds = round(fake_faces_mean * 100, 3)
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
return text2