metamath_mistral_7b / metamath.py
nishanthsr's picture
Add application file
febe377
# streamlit_app.py
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("meta-math/MetaMath-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("meta-math/MetaMath-Mistral-7B")
return tokenizer, model
tokenizer, model = load_model()
# Streamlit app layout
st.title("MetaMath Mistral 7B Question-Answering")
st.write("Ask any question, and the model will generate an answer:")
# Input from user
question = st.text_input("Enter your question:")
if st.button("Generate Answer"):
if question.strip():
# Tokenize input
inputs = tokenizer.encode(question, return_tensors="pt")
# Generate response
with torch.no_grad():
outputs = model.generate(inputs, max_length=200, num_return_sequences=1)
# Decode and display the output
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write("**Answer:**", answer)
else:
st.write("Please enter a question to get an answer.")