Spaces:
Sleeping
Sleeping
import gradio as gr | |
import face_recognition | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import io | |
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import db | |
from firebase_admin import storage | |
from datetime import datetime | |
# Initialize Firebase | |
cred = credentials.Certificate("path/to/serviceAccountKey.json") # Update the path to your Firebase credentials | |
firebase_admin.initialize_app(cred, { | |
'databaseURL': 'https://faceantendancerealtime-default-rtdb.firebaseio.com/', | |
'storageBucket': 'faceantendancerealtime.appspot.com' | |
}) | |
bucket = storage.bucket() | |
# Load the known face encodings and their IDs from Firebase | |
def load_known_encodings(): | |
# Code to download the 'EncodeFile.p' from Firebase Storage | |
# Assume 'EncodeFile.p' is already uploaded to Firebase Storage | |
blob = bucket.blob('EncodeFile.p') | |
blob.download_to_filename('/tmp/EncodeFile.p') | |
with open('/tmp/EncodeFile.p', 'rb') as file: | |
encodeListKnownWithIds = pickle.load(file) | |
return encodeListKnownWithIds | |
encodeListKnownWithIds = load_known_encodings() | |
encodeListKnown, studentsIds = encodeListKnownWithIds | |
def recognize_face(input_image): | |
# Convert the PIL Image to a numpy array | |
img = np.array(input_image) | |
# Convert the image to RGB | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# Resize image for faster processing | |
img_small = cv2.resize(img, (0, 0), None, 0.25, 0.25) | |
# Find faces in the image | |
face_locations = face_recognition.face_locations(img_small) | |
face_encodings = face_recognition.face_encodings(img_small, face_locations) | |
# Convert the coordinates to full scale since the image was scaled to 1/4 size | |
face_locations = [(top*4, right*4, bottom*4, left*4) for top, right, bottom, left in face_locations] | |
# Recognize faces | |
for face_encoding, (top, right, bottom, left) in zip(face_encodings, face_locations): | |
matches = face_recognition.compare_faces(encodeListKnown, face_encoding) | |
name = "Unknown" | |
# Use the known face with the smallest distance to the new face | |
face_distances = face_recognition.face_distance(encodeListKnown, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
if matches[best_match_index]: | |
name = studentsIds[best_match_index] | |
# Draw rectangles and names on the original image | |
cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2) | |
cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1) | |
# Convert the image back to PIL format | |
return Image.fromarray(img) | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=recognize_face, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil"), | |
title="Face Recognition Attendance System", | |
description="Upload an image to identify registered students." | |
) | |
# Run the Gradio app | |
if __name__ == "__main__": | |
iface.launch() | |