Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import sys | |
from typing import Any, Dict, Optional, Tuple | |
import datasets | |
import torch | |
import transformers | |
from transformers import HfArgumentParser, Seq2SeqTrainingArguments | |
from transformers.trainer_utils import get_last_checkpoint | |
from ..extras.logging import get_logger | |
from .data_args import DataArguments | |
from .evaluation_args import EvaluationArguments | |
from .finetuning_args import FinetuningArguments | |
from .generating_args import GeneratingArguments | |
from .model_args import ModelArguments | |
logger = get_logger(__name__) | |
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] | |
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] | |
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] | |
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] | |
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] | |
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] | |
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]: | |
if args is not None: | |
return parser.parse_dict(args) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): | |
return parser.parse_yaml_file(os.path.abspath(sys.argv[1])) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
return parser.parse_json_file(os.path.abspath(sys.argv[1])) | |
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True) | |
if unknown_args: | |
print(parser.format_help()) | |
print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args)) | |
raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args)) | |
return (*parsed_args,) | |
def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None: | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None: | |
if model_args.quantization_bit is not None: | |
if finetuning_args.finetuning_type != "lora": | |
raise ValueError("Quantization is only compatible with the LoRA method.") | |
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter: | |
raise ValueError("Cannot create new adapter upon a quantized model.") | |
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: | |
if finetuning_args.finetuning_type != "lora": | |
raise ValueError("Multiple adapters are only available for LoRA tuning.") | |
if model_args.quantization_bit is not None: | |
raise ValueError("Quantized model only accepts a single adapter. Merge them first.") | |
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: | |
parser = HfArgumentParser(_TRAIN_ARGS) | |
return _parse_args(parser, args) | |
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: | |
parser = HfArgumentParser(_INFER_ARGS) | |
return _parse_args(parser, args) | |
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: | |
parser = HfArgumentParser(_EVAL_ARGS) | |
return _parse_args(parser, args) | |
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: | |
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args) | |
# Setup logging | |
if training_args.should_log: | |
_set_transformers_logging() | |
# Check arguments | |
if finetuning_args.stage != "pt" and data_args.template is None: | |
raise ValueError("Please specify which `template` to use.") | |
if finetuning_args.stage != "sft" and training_args.predict_with_generate: | |
raise ValueError("`predict_with_generate` cannot be set as True except SFT.") | |
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate: | |
raise ValueError("Please enable `predict_with_generate` to save model predictions.") | |
if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end: | |
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.") | |
if finetuning_args.stage == "ppo" and not training_args.do_train: | |
raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.") | |
if finetuning_args.stage == "ppo" and model_args.shift_attn: | |
raise ValueError("PPO training is incompatible with S^2-Attn.") | |
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth: | |
raise ValueError("Unsloth does not support lora reward model.") | |
if training_args.max_steps == -1 and data_args.streaming: | |
raise ValueError("Please specify `max_steps` in streaming mode.") | |
if training_args.do_train and training_args.predict_with_generate: | |
raise ValueError("`predict_with_generate` cannot be set as True while training.") | |
if training_args.do_train and finetuning_args.finetuning_type == "lora" and finetuning_args.lora_target is None: | |
raise ValueError("Please specify `lora_target` in LoRA training.") | |
_verify_model_args(model_args, finetuning_args) | |
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm): | |
logger.warning("We recommend enable `upcast_layernorm` in quantized training.") | |
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): | |
logger.warning("We recommend enable mixed precision training.") | |
if (not training_args.do_train) and model_args.quantization_bit is not None: | |
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.") | |
if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None: | |
logger.warning("Specify `ref_model` for computing rewards at evaluation.") | |
# postprocess training_args | |
if ( | |
training_args.local_rank != -1 | |
and training_args.ddp_find_unused_parameters is None | |
and finetuning_args.finetuning_type == "lora" | |
): | |
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.") | |
training_args_dict = training_args.to_dict() | |
training_args_dict.update(dict(ddp_find_unused_parameters=False)) | |
training_args = Seq2SeqTrainingArguments(**training_args_dict) | |
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]: | |
can_resume_from_checkpoint = False | |
training_args.resume_from_checkpoint = None | |
else: | |
can_resume_from_checkpoint = True | |
if ( | |
training_args.resume_from_checkpoint is None | |
and training_args.do_train | |
and os.path.isdir(training_args.output_dir) | |
and not training_args.overwrite_output_dir | |
and can_resume_from_checkpoint | |
): | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.") | |
if last_checkpoint is not None: | |
training_args_dict = training_args.to_dict() | |
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint)) | |
training_args = Seq2SeqTrainingArguments(**training_args_dict) | |
logger.info( | |
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format( | |
training_args.resume_from_checkpoint | |
) | |
) | |
if ( | |
finetuning_args.stage in ["rm", "ppo"] | |
and finetuning_args.finetuning_type == "lora" | |
and training_args.resume_from_checkpoint is not None | |
): | |
logger.warning( | |
"Add {} to `adapter_name_or_path` to resume training from checkpoint.".format( | |
training_args.resume_from_checkpoint | |
) | |
) | |
# postprocess model_args | |
model_args.compute_dtype = ( | |
torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None) | |
) | |
model_args.model_max_length = data_args.cutoff_len | |
# Log on each process the small summary: | |
logger.info( | |
"Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format( | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
str(model_args.compute_dtype), | |
) | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Set seed before initializing model. | |
transformers.set_seed(training_args.seed) | |
return model_args, data_args, training_args, finetuning_args, generating_args | |
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: | |
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args) | |
_set_transformers_logging() | |
if data_args.template is None: | |
raise ValueError("Please specify which `template` to use.") | |
_verify_model_args(model_args, finetuning_args) | |
return model_args, data_args, finetuning_args, generating_args | |
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: | |
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args) | |
_set_transformers_logging() | |
if data_args.template is None: | |
raise ValueError("Please specify which `template` to use.") | |
_verify_model_args(model_args, finetuning_args) | |
transformers.set_seed(eval_args.seed) | |
return model_args, data_args, eval_args, finetuning_args | |