Spaces:
Sleeping
Sleeping
import lancedb | |
import os | |
import gradio as gr | |
import numpy as np | |
from sentence_transformers import SentenceTransformer, CrossEncoder | |
db = lancedb.connect(".lancedb") | |
TABLE = db.open_table(os.getenv("TABLE_NAME")) | |
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") | |
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) | |
retriever = SentenceTransformer(os.getenv("EMB_MODEL")) | |
reranker = CrossEncoder("RERANK_MODEL", max_length=512) | |
def retrieve(query, n): | |
query_vec = retriever.encode(query) | |
try: | |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(n).to_list() | |
documents = [doc[TEXT_COLUMN] for doc in documents] | |
return documents | |
except Exception as e: | |
raise gr.Error(str(e)) | |
def rerank(query, documents, k): | |
query_doc_pairs = [[query, doc] for doc in documents] | |
similarity_scores = reranker.predict(query_doc_pairs) | |
sim_scores_argsort = reversed(np.argsort(similarity_scores)) | |
rerank_documents = [] | |
for idx in sim_scores_argsort[:k]: | |
rerank_documents.append(documents[idx]) | |
return rerank_documents | |