omkar56's picture
Update main.py
cafd34d
raw
history blame
2.4 kB
import os
os.system("sudo apt-get install xclip")
import nltk
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
from fastapi.security.api_key import APIKeyHeader
from typing import Optional, Annotated
from fastapi.encoders import jsonable_encoder
from PIL import Image
from io import BytesIO
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
API_KEY = os.environ.get("API_KEY")
app = FastAPI()
api_key_header = APIKeyHeader(name="api_key", auto_error=False)
def get_api_key(api_key: Optional[str] = Depends(api_key_header)):
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=401, detail="Unauthorized access")
return api_key
@app.post("/api/ocr", response_model=dict)
async def ocr(
api_key: str = Depends(get_api_key),
image: UploadFile = File(...),
# languages: list = Body(["eng"])
):
try:
content = await image.read()
image = Image.open(BytesIO(content))
print("[image]",image)
if hasattr(pytesseract, "image_to_string"):
print("Image to string function is available")
print(pytesseract.image_to_string(image, lang = 'eng'))
text = ocr_tesseract(image, ['eng'])
else:
print("Image to string function is not available")
# text = pytesseract.image_to_string(image, lang="+".join(languages))
except Exception as e:
return {"error": str(e)}, 500
return {"ImageText": "text"}
@app.post("/api/translate", response_model=dict)
async def translate(
api_key: str = Depends(get_api_key),
text: str = Body(...),
src: str = "en",
trg: str = "zh",
):
if api_key != API_KEY:
return {"error": "Invalid API key"}, 401
tokenizer, model = get_model(src, trg)
translated_text = ""
for sentence in sent_tokenize(text):
translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0]
translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n"
return jsonable_encoder({"translated_text": translated_text})
def get_model(src: str, trg: str):
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model