File size: 3,254 Bytes
15188ef 91d4a22 15188ef 91d4a22 d715186 47a8f30 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 47a8f30 15188ef 91d4a22 15188ef 91d4a22 a7cf972 91d4a22 a7cf972 91d4a22 ac3517b 91d4a22 ac3517b 91d4a22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import pandas as pd
import numpy as np
from collections import defaultdict
from gradio_leaderboard import Leaderboard, SelectColumns
# Load the DataFrame from the CSV file for detailed pass@k metrics
df = pd.read_csv('results.csv')
# Ensure 'Model' and 'Scenario' columns are strings
df['Model'] = df['Model'].astype(str)
df['Scenario'] = df['Scenario'].astype(str)
# Function to estimate pass@k
def estimate_pass_at_k(num_samples, num_correct, k):
def estimator(n, c, k):
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)])
# Function to calculate pass@k
def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]):
filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)]
num_samples = filtered_df['Runs'].values
num_correct = filtered_df['Successes'].values
pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values}
return pass_at_k
# Function to filter data and calculate pass@k
def filter_data(model, scenario):
pass_at_k = calculate_pass_at_k(df, model, scenario)
return pd.DataFrame([pass_at_k])
# Initialize the leaderboard
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=["markdown", "number", "number", "number"], # Specify the types of your columns
select_columns=SelectColumns(
default_selection=["Model", "pass@1", "pass@5", "pass@10"], # Columns to display by default
cant_deselect=[], # Columns that cannot be deselected
label="Select Columns to Display:",
),
search_columns=["Model"], # Columns that can be searched
hide_columns=[], # Columns to hide
filter_columns=[], # Filters for the columns
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# Gradio interface
models = df['Model'].unique().tolist()
scenarios = df['Scenario'].unique().tolist()
demo = gr.Blocks()
with demo:
gr.Markdown("# 🏆 WebApp1K Models Leaderboard")
model_input = gr.Dropdown(choices=models, label="Select Model")
scenario_input = gr.Dropdown(choices=scenarios, label="Select Scenario")
output = gr.DataFrame(headers=["pass@1", "pass@5", "pass@10"])
filter_button = gr.Button("Filter")
filter_button.click(filter_data, inputs=[model_input, scenario_input], outputs=output)
# Initialize leaderboard with the complete DataFrame
complete_pass_at_k = df.groupby('Model', group_keys=False).apply(lambda x: pd.Series({
'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(),
'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(),
'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean()
}, index=['pass@1', 'pass@5', 'pass@10'])).reset_index()
leaderboard = init_leaderboard(complete_pass_at_k)
leaderboard.render()
# Launch the Gradio interface
demo.launch()
|