File size: 4,097 Bytes
15188ef 91d4a22 15188ef 126a4c3 d715186 126a4c3 47a8f30 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 15188ef 91d4a22 c19bdc2 15188ef 91d4a22 15188ef c19bdc2 91d4a22 15188ef e697cf2 91d4a22 77a1b1d 15188ef f7f1bb2 15188ef 91d4a22 47a8f30 15188ef 91d4a22 15188ef 91d4a22 53aba41 a7cf972 e72ba15 fa30761 68618b2 53aba41 e72ba15 53aba41 91d4a22 bfddf6d 53aba41 77a1b1d 34ff948 53aba41 77a1b1d 34ff948 91d4a22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
import pandas as pd
import numpy as np
from collections import defaultdict
from gradio_leaderboard import Leaderboard, SelectColumns
# Load the DataFrame from the CSV files for detailed pass@k metrics
df = pd.read_csv('results.csv')
duo_df = pd.read_csv('results_duo.csv')
# Ensure 'Model' and 'Scenario' columns are strings
df['Model'] = df['Model'].astype(str)
df['Scenario'] = df['Scenario'].astype(str)
# Function to estimate pass@k
def estimate_pass_at_k(num_samples, num_correct, k):
def estimator(n, c, k):
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)])
# Function to calculate pass@k
def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]):
filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)]
num_samples = filtered_df['Runs'].values
num_correct = filtered_df['Successes'].values
pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values}
return pass_at_k
# Function to filter data and calculate pass@k
def filter_data(model, scenario):
pass_at_k = calculate_pass_at_k(df, model, scenario)
return pd.DataFrame([pass_at_k])
# Initialize the leaderboard
def init_leaderboard(dataframe, default_selection=["Model", "pass@1", "pass@5", "pass@10"], height=600):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=["markdown", "number", "number", "number"], # Specify the types of your columns
select_columns=SelectColumns(
default_selection=default_selection, # Columns to display by default
cant_deselect=[], # Columns that cannot be deselected
label="Select Columns to Display:",
),
search_columns=["Model"], # Columns that can be searched
hide_columns=[], # Columns to hide
filter_columns=[], # Filters for the columns
#bool_checkboxgroup_label="Hide models",
interactive=False,
height=height,
)
# Gradio interface
models = df['Model'].unique().tolist()
scenarios = df['Scenario'].unique().tolist()
demo = gr.Blocks()
with demo:
# Markdown for the leaderboard header and external links
gr.Markdown("# 🏆 WebApp1K Models Leaderboard")
gr.Markdown(
"## [Discord](https://discord.gg/3qpAbWC7) " +
"[Papers](https://huggingface.co/onekq) " +
"[Blog](https://huggingface.co/blog/onekq/all-llms-write-great-code) " +
"[Github](https://github.com/onekq/WebApp1k) " +
"[AI Models](https://www.aimodels.fyi/papers/arxiv/webapp1k-practical-code-generation-benchmark-web-app)"
)
# Initialize leaderboard with the complete DataFrame
duo_complete_pass_at_k = duo_df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({
'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean()
}, index=['pass@1'])).reset_index()
complete_pass_at_k = df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({
'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(),
'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(),
'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean()
}, index=['pass@1', 'pass@5', 'pass@10'])).reset_index()
# WebApp1K-Duo leaderboard display
gr.Markdown("# WebApp1K-Duo ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-Duo-React))")
duo_leaderboard = init_leaderboard(duo_complete_pass_at_k, default_selection = ["Model", "pass@1"], height=400)
# WebApp1K main leaderboard display
gr.Markdown("# WebApp1K ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-React))")
leaderboard = init_leaderboard(complete_pass_at_k, height=800)
# Launch the Gradio interface
demo.launch()
|