Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfFileSystem | |
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" | |
EXCLUDED_KEYS = { | |
"pretty_env_info", | |
"chat_template", | |
"group_subtasks", | |
} | |
EXCLUDED_RESULTS_KEYS = { | |
"leaderboard", | |
} | |
EXCLUDED_RESULTS_LEADERBOARDS_KEYS = { | |
"alias", | |
} | |
fs = HfFileSystem() | |
def fetch_result_paths(): | |
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") | |
return paths | |
def filter_latest_result_path_per_model(paths): | |
from collections import defaultdict | |
d = defaultdict(list) | |
for path in paths: | |
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) | |
d[model_id].append(path) | |
return {model_id: max(paths) for model_id, paths in d.items()} | |
def get_result_path_from_model(model_id, result_path_per_model): | |
return result_path_per_model[model_id] | |
def load_data(result_path) -> pd.DataFrame: | |
with fs.open(result_path, "r") as f: | |
data = json.load(f) | |
return data | |
# model_name = data.get("model_name", "Model") | |
# df = pd.json_normalize([data]) | |
# return df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index() | |
def load_result(model_id): | |
result_path = get_result_path_from_model(model_id, latest_result_path_per_model) | |
data = load_data(result_path) | |
df = to_dataframe_all(data) | |
result = [ | |
to_vertical(df), | |
to_vertical(to_dataframe_results(df)) | |
] | |
return result | |
def to_dataframe(data): | |
return pd.DataFrame.from_records([data]) | |
def to_vertical(df): | |
# df = df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index() | |
df = df.iloc[0].rename_axis("Parameters").to_frame() # .reset_index() | |
df.index = df.index.str.join(".") | |
return df | |
def to_dataframe_all(data): | |
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) | |
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple | |
df.columns = list(map(lambda x: tuple(x.split(".")), df.columns)) | |
df.index = [data.get("model_name", "Model")] | |
return df | |
# | |
# def to_dataframe_results(data): | |
# dfs = {} | |
# for key in data["results"]: | |
# if key not in EXCLUDED_RESULTS_KEYS: # key.startswith("leaderboard_"): | |
# name = key[len("leaderboard_"):] | |
# df = to_dataframe( | |
# { | |
# key: value | |
# for key, value in data["results"][key].items() | |
# if key not in EXCLUDED_RESULTS_LEADERBOARDS_KEYS | |
# } | |
# ) | |
# # df.drop(columns=["alias"]) | |
# # df.columns = pd.MultiIndex.from_product([[name], df.columns]) | |
# df.columns = [f"{name}.{column}" for column in df.columns] | |
# dfs[name] = df | |
# return pd.concat(dfs.values(), axis="columns") | |
def to_dataframe_results(df): | |
df = df.loc[:, df.columns.str[0] == "results"] | |
df = df.loc[:, ~df.columns.str[1].isin(EXCLUDED_RESULTS_KEYS)] | |
df = df.loc[:, ~df.columns.str[2].isin(EXCLUDED_RESULTS_LEADERBOARDS_KEYS)] | |
return df | |
def concat_result_1(result_1, results): | |
return pd.concat([result_1, results.iloc[:, [0, 2]].set_index("Parameters")], axis=1).reset_index() | |
def concat_result_2(result_2, results): | |
return pd.concat([results.iloc[:, [0, 1]].set_index("Parameters"), result_2], axis=1).reset_index() | |
def render_result_1(model_id, *results): | |
result = load_result(model_id) | |
return [concat_result_1(*result_args) for result_args in zip(result, results)] | |
def render_result_2(model_id, *results): | |
result = load_result(model_id) | |
return [concat_result_2(*result_args) for result_args in zip(result, results)] | |
# if __name__ == "__main__": | |
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) | |
with gr.Blocks(fill_height=True) as demo: | |
gr.HTML("<h1 style='text-align: center;'>Compare Results of the π€ Open LLM Leaderboard</h1>") | |
gr.HTML("<h3 style='text-align: center;'>Select 2 results to load and compare</h3>") | |
with gr.Row(): | |
with gr.Column(): | |
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results") | |
load_btn_1 = gr.Button("Load") | |
with gr.Column(): | |
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results") | |
load_btn_2 = gr.Button("Load") | |
with gr.Row(): | |
with gr.Tab("All"): | |
compared_results_all = gr.Dataframe( | |
label="Results", | |
headers=["Parameters", "Model-1", "Model-2"], | |
interactive=False, | |
column_widths=["30%", "30%", "30%"], | |
wrap=True, | |
) | |
with gr.Tab("Results"): | |
compared_results_results = gr.Dataframe( | |
label="Results", | |
headers=["Parameters", "Model-1", "Model-2"], | |
interactive=False, | |
column_widths=["30%", "30%", "30%"], | |
wrap=True, | |
) | |
load_btn_1.click( | |
fn=render_result_1, | |
inputs=[model_id_1, compared_results_all, compared_results_results], | |
outputs=[compared_results_all, compared_results_results], | |
) | |
load_btn_2.click( | |
fn=render_result_2, | |
inputs=[model_id_2, compared_results_all, compared_results_results], | |
outputs=[compared_results_all, compared_results_results], | |
) | |
demo.launch() | |