openfree's picture
Create app.py
c26f143 verified
raw
history blame
5.36 kB
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import numpy as np
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from PIL import Image
import io
import base64
# νŽ˜μ΄μ§€ μ„€μ •
st.set_page_config(layout="wide", page_title="HuggingFace Spaces Trending Analysis")
# μŠ€νƒ€μΌ 적용
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
}
.stButton>button {
background-color: #ff4b4b;
color: white;
border-radius: 5px;
}
.trending-card {
padding: 20px;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# 타이틀
st.title("πŸ€— HuggingFace Spaces Trending Analysis")
# 관심 슀페이슀 URL λ¦¬μŠ€νŠΈμ™€ 정보
target_spaces = {
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
# ... [λ‚˜λ¨Έμ§€ μŠ€νŽ˜μ΄μŠ€λ“€λ„ λ™μΌν•œ ν˜•μ‹μœΌλ‘œ μΆ”κ°€]
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}
def get_trending_spaces(date):
url = f"https://huggingface.co/api/spaces/trending?date={date}&limit=300"
response = requests.get(url)
if response.status_code == 200:
return response.json()
return None
def get_space_rank(spaces, space_id):
for idx, space in enumerate(spaces, 1):
if space.get('id', '') == space_id:
return idx
return None
# 데이터 μˆ˜μ§‘
@st.cache_data
def fetch_trending_data():
start_date = datetime(2023, 12, 1)
end_date = datetime(2023, 12, 31)
dates = [(start_date + timedelta(days=x)).strftime('%Y-%m-%d')
for x in range((end_date - start_date).days + 1)]
trending_data = {}
target_space_ranks = {space: [] for space in target_spaces.keys()}
with st.spinner('데이터λ₯Ό λΆˆλŸ¬μ˜€λŠ” 쀑...'):
for date in dates:
spaces = get_trending_spaces(date)
if spaces:
trending_data[date] = spaces
for space_id in target_spaces.keys():
rank = get_space_rank(spaces, space_id)
target_space_ranks[space_id].append(rank)
return trending_data, target_space_ranks, dates
trending_data, target_space_ranks, dates = fetch_trending_data()
# μ‹œκ°ν™”
st.header("πŸ“ˆ Trending Rank Changes")
# Plotlyλ₯Ό μ‚¬μš©ν•œ μΈν„°λž™ν‹°λΈŒ κ·Έλž˜ν”„
fig = go.Figure()
for space_id, ranks in target_space_ranks.items():
fig.add_trace(go.Scatter(
x=dates,
y=ranks,
name=space_id,
mode='lines+markers',
hovertemplate=
'<b>Date</b>: %{x}<br>' +
'<b>Rank</b>: %{y}<br>' +
'<b>Space</b>: ' + space_id
))
fig.update_layout(
title='Trending Ranks Over Time',
xaxis_title='Date',
yaxis_title='Rank',
yaxis_autorange='reversed',
height=800,
template='plotly_white',
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
# μ΅œμ‹  μˆœμœ„ 정보 좜λ ₯
st.header("πŸ† Latest Rankings")
latest_date = max(trending_data.keys())
latest_spaces = trending_data[latest_date]
cols = st.columns(3)
col_idx = 0
for space_id, url in target_spaces.items():
rank = get_space_rank(latest_spaces, space_id)
if rank:
space_info = next((s for s in latest_spaces if s['id'] == space_id), None)
if space_info:
with cols[col_idx % 3]:
with st.container():
st.markdown(f"""
<div class="trending-card">
<h3>#{rank} - {space_id}</h3>
<p>πŸ‘ Likes: {space_info.get('likes', 'N/A')}</p>
<p>πŸ“ {space_info.get('title', 'N/A')}</p>
<p>{space_info.get('description', 'N/A')[:100]}...</p>
<a href="{url}" target="_blank">Visit Space πŸ”—</a>
</div>
""", unsafe_allow_html=True)
col_idx += 1
# λ‹€μš΄λ‘œλ“œ κΈ°λŠ₯
st.header("πŸ“Š Download Data")
# DataFrame 생성
df_data = []
for date in dates:
spaces = trending_data.get(date, [])
for space_id in target_spaces.keys():
rank = get_space_rank(spaces, space_id)
if rank:
space_info = next((s for s in spaces if s['id'] == space_id), None)
if space_info:
df_data.append({
'Date': date,
'Space ID': space_id,
'Rank': rank,
'Likes': space_info.get('likes', 'N/A'),
'Title': space_info.get('title', 'N/A'),
'URL': target_spaces[space_id]
})
df = pd.DataFrame(df_data)
# CSV λ‹€μš΄λ‘œλ“œ λ²„νŠΌ
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="trending_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
# ν‘Έν„°
st.markdown("""
---
Made with ❀️ using Streamlit and HuggingFace API
""")