Spaces:
openfree
/
Running on CPU Upgrade

File size: 32,739 Bytes
a8fb1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649353
a8fb1c5
4649353
a8fb1c5
 
 
4649353
 
a8fb1c5
4649353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fb1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649353
 
 
 
 
a8fb1c5
 
 
 
 
 
 
 
 
 
 
4649353
 
 
 
 
a8fb1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649353
 
 
 
 
 
 
 
 
 
a8fb1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4649353
 
 
 
 
 
 
 
 
 
a8fb1c5
 
 
 
 
 
 
 
 
 
 
4649353
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
import gradio as gr
import requests
import json
import os
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from openai import OpenAI
from bs4 import BeautifulSoup
import re
import pathlib
import sqlite3
import pytz

# List of target companies/keywords
KOREAN_COMPANIES = [
    "NVIDIA",
    "ALPHABET",
    "APPLE",
    "TESLA",
    "AMAZON",
    "MICROSOFT", 
    "META", 
    "INTEL",
    "SAMSUNG",
    "HYNIX",
    "BITCOIN",   
    "crypto",
    "stock",
    "Economics",
    "Finance",
    "investing"
]

def convert_to_seoul_time(timestamp_str):
    """
    Convert a given timestamp string (UTC) to Seoul time (KST).
    """
    try:
        dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
        seoul_tz = pytz.timezone('Asia/Seoul')
        seoul_time = seoul_tz.localize(dt)
        return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
    except Exception as e:
        print(f"Time conversion error: {str(e)}")
        return timestamp_str

def analyze_sentiment_batch(articles, client):
    """
    Perform a comprehensive sentiment analysis of the news articles using the OpenAI API.
    """
    try:
        # Combine all articles into a single text
        combined_text = "\n\n".join([
            f"Title: {article.get('title', '')}\nContent: {article.get('snippet', '')}"
            for article in articles
        ])
        
        prompt = f"""Please perform an overall sentiment analysis of the following collection of news articles:

News content:
{combined_text}

Please follow this format:
1. Overall Sentiment: [Positive/Negative/Neutral]
2. Key Positive Factors:
   - [Item1]
   - [Item2]
3. Key Negative Factors:
   - [Item1]
   - [Item2]
4. Summary: [Detailed explanation]
"""

        response = client.chat.completions.create(
            model="CohereForAI/c4ai-command-r-plus-08-2024",
            messages=[{"role": "user", "content": prompt}],
            temperature=0.3,
            max_tokens=1000
        )
        
        return response.choices[0].message.content
    except Exception as e:
        return f"Sentiment analysis failed: {str(e)}"


# Initialize the database
def init_db():
    """
    Initialize the SQLite database (search_results.db) if it doesn't already exist.
    """
    db_path = pathlib.Path("search_results.db")
    conn = sqlite3.connect(db_path)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS searches
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  keyword TEXT,
                  country TEXT,
                  results TEXT,
                  timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
    conn.commit()
    conn.close()

def save_to_db(keyword, country, results):
    """
    Save the search results for a specific (keyword, country) combination into the database.
    """
    conn = sqlite3.connect("search_results.db")
    c = conn.cursor()
    seoul_tz = pytz.timezone('Asia/Seoul')
    now = datetime.now(seoul_tz)
    timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
    
    c.execute("""INSERT INTO searches 
                 (keyword, country, results, timestamp) 
                 VALUES (?, ?, ?, ?)""",
              (keyword, country, json.dumps(results), timestamp))
    conn.commit()
    conn.close()

def load_from_db(keyword, country):
    """
    Load the most recent search results for a specific (keyword, country) combination from the database.
    Returns the data and the timestamp.
    """
    conn = sqlite3.connect("search_results.db")
    c = conn.cursor()
    c.execute(
        "SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
        (keyword, country)
    )
    result = c.fetchone()
    conn.close()
    if result:
        return json.loads(result[0]), convert_to_seoul_time(result[1])
    return None, None

def display_results(articles):
    """
    Convert a list of news articles into a Markdown string for display.
    """
    output = ""
    for idx, article in enumerate(articles, 1):
        output += f"### {idx}. {article['title']}\n"
        output += f"Source: {article['channel']}\n"
        output += f"Time: {article['time']}\n"
        output += f"Link: {article['link']}\n"
        output += f"Summary: {article['snippet']}\n\n"
    return output


########################################
# 1) Search => Articles + Analysis, then save to DB
########################################
def search_company(company):
    """
    For a single company (or keyword), search US news.
    1) Retrieve a list of articles
    2) Perform sentiment analysis
    3) Save results to DB
    4) Return (articles + analysis) in a single output.
    """
    error_message, articles = serphouse_search(company, "United States")
    if not error_message and articles:
        # Perform sentiment analysis
        analysis = analyze_sentiment_batch(articles, client)
        
        # Prepare data to save in DB
        store_dict = {
            "articles": articles,
            "analysis": analysis
        }
        save_to_db(company, "United States", store_dict)
        
        # Prepare output for display
        output = display_results(articles)
        output += f"\n\n### Analysis Report\n{analysis}\n"
        return output
    return f"No search results found for {company}."

########################################
# 2) Load => Return articles + analysis from DB
########################################
def load_company(company):
    """
    Load the most recent US news search results for the given company (or keyword) from the database,
    and return the articles + analysis in a single output.
    """
    data, timestamp = load_from_db(company, "United States")
    if data:
        articles = data.get("articles", [])
        analysis = data.get("analysis", "")
        
        output = f"### {company} Search Results\nLast Updated: {timestamp}\n\n"
        output += display_results(articles)
        output += f"\n\n### Analysis Report\n{analysis}\n"
        return output
    return f"No saved results for {company}."


########################################
# 3) Updated show_stats() with new title
########################################
def show_stats():
    """
    For each company in KOREAN_COMPANIES:
      - Retrieve the most recent timestamp in DB
      - Number of articles
      - Sentiment analysis result
    Return these in a report format.

    Title changed to: "EarnBOT Analysis Report"
    """
    conn = sqlite3.connect("search_results.db")
    c = conn.cursor()
    
    output = "## EarnBOT Analysis Report\n\n"
    
    data_list = []
    for company in KOREAN_COMPANIES:
        c.execute("""
            SELECT results, timestamp 
            FROM searches 
            WHERE keyword = ? 
            ORDER BY timestamp DESC 
            LIMIT 1
        """, (company,))
        
        row = c.fetchone()
        if row:
            results_json, timestamp = row
            data_list.append((company, timestamp, results_json))
    
    conn.close()
    
    def analyze_data(item):
        comp, tstamp, results_json = item
        data = json.loads(results_json)
        articles = data.get("articles", [])
        analysis = data.get("analysis", "")
        
        count_articles = len(articles)
        return (comp, tstamp, count_articles, analysis)

    results_list = []
    with ThreadPoolExecutor(max_workers=5) as executor:
        futures = [executor.submit(analyze_data, dl) for dl in data_list]
        for future in as_completed(futures):
            results_list.append(future.result())
    
    for comp, tstamp, count, analysis in results_list:
        seoul_time = convert_to_seoul_time(tstamp)
        output += f"### {comp}\n"
        output += f"- Last updated: {seoul_time}\n"
        output += f"- Number of articles stored: {count}\n\n"
        if analysis:
            output += "#### News Sentiment Analysis\n"
            output += f"{analysis}\n\n"
        output += "---\n\n"
    
    return output


def search_all_companies():
    """
    Search all companies in KOREAN_COMPANIES (in parallel), 
    perform sentiment analysis + save to DB => return Markdown of all results.
    """
    overall_result = "# [Search Results for All Companies]\n\n"
    
    def do_search(comp):
        return comp, search_company(comp)
    
    with ThreadPoolExecutor(max_workers=5) as executor:
        futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
        for future in as_completed(futures):
            comp, res_text = future.result()
            overall_result += f"## {comp}\n"
            overall_result += res_text + "\n\n"
    
    return overall_result

def load_all_companies():
    """
    Load articles + analysis for all companies in KOREAN_COMPANIES from the DB => return Markdown.
    """
    overall_result = "# [All Companies Data Output]\n\n"
    
    for comp in KOREAN_COMPANIES:
        overall_result += f"## {comp}\n"
        overall_result += load_company(comp)
        overall_result += "\n"
    return overall_result

def full_summary_report():
    """
    1) Search all companies (in parallel) -> 2) Load results -> 3) Show sentiment analysis stats
    Return a combined report with all three steps.
    """
    # 1) Search all companies => store to DB
    search_result_text = search_all_companies()
    
    # 2) Load all results => from DB
    load_result_text = load_all_companies()
    
    # 3) Show stats => EarnBOT Analysis Report
    stats_text = show_stats()
    
    combined_report = (
        "# Full Analysis Summary Report\n\n"
        "Executed in the following order:\n"
        "1. Search all companies (parallel) + sentiment analysis => 2. Load results from DB => 3. Show overall sentiment analysis stats\n\n"
        f"{search_result_text}\n\n"
        f"{load_result_text}\n\n"
        "## [Overall Sentiment Analysis Stats]\n\n"
        f"{stats_text}"
    )
    return combined_report


########################################
# Additional feature: User custom search
########################################
def search_custom(query, country):
    """
    For a user-provided (query, country):
    1) Search + sentiment analysis => save to DB
    2) Load from DB => display articles + analysis
    """
    error_message, articles = serphouse_search(query, country)
    if error_message:
        return f"An error occurred: {error_message}"
    if not articles:
        return "No results were found for your query."
    
    # 1) Perform analysis
    analysis = analyze_sentiment_batch(articles, client)
    
    # 2) Save to DB
    save_data = {
        "articles": articles,
        "analysis": analysis
    }
    save_to_db(query, country, save_data)
    
    # 3) Reload from DB
    loaded_data, timestamp = load_from_db(query, country)
    if not loaded_data:
        return "Failed to load data from DB."

    # 4) Prepare final output
    out = f"## [Custom Search Results]\n\n"
    out += f"**Keyword**: {query}\n\n"
    out += f"**Country**: {country}\n\n"
    out += f"**Timestamp**: {timestamp}\n\n"

    arts = loaded_data.get("articles", [])
    analy = loaded_data.get("analysis", "")
    
    out += display_results(arts)
    out += f"### News Sentiment Analysis\n{analy}\n"
    
    return out


########################################
# API Authentication
########################################
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
    raise ValueError("HF_TOKEN environment variable is not set")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

API_KEY = os.getenv("SERPHOUSE_API_KEY")


########################################
# Country-specific settings
########################################
COUNTRY_LANGUAGES = {
    "United States": "en",
    "KOREA": "ko",
    "United Kingdom": "en",
    "Taiwan": "zh-TW",
    "Canada": "en",
    "Australia": "en",
    "Germany": "de",
    "France": "fr",
    "Japan": "ja",
    "China": "zh",
    "India": "hi",
    "Brazil": "pt",
    "Mexico": "es",
    "Russia": "ru",
    "Italy": "it",
    "Spain": "es",
    "Netherlands": "nl",
    "Singapore": "en",
    "Hong Kong": "zh-HK",
    "Indonesia": "id",
    "Malaysia": "ms",
    "Philippines": "tl",
    "Thailand": "th",
    "Vietnam": "vi",
    "Belgium": "nl",
    "Denmark": "da",
    "Finland": "fi",
    "Ireland": "en",
    "Norway": "no",
    "Poland": "pl",
    "Sweden": "sv",
    "Switzerland": "de",
    "Austria": "de",
    "Czech Republic": "cs",
    "Greece": "el",
    "Hungary": "hu",
    "Portugal": "pt",
    "Romania": "ro",
    "Turkey": "tr",
    "Israel": "he",
    "Saudi Arabia": "ar",
    "United Arab Emirates": "ar",
    "South Africa": "en",
    "Argentina": "es",
    "Chile": "es",
    "Colombia": "es",
    "Peru": "es",
    "Venezuela": "es",
    "New Zealand": "en",
    "Bangladesh": "bn",
    "Pakistan": "ur",
    "Egypt": "ar",
    "Morocco": "ar",
    "Nigeria": "en",
    "Kenya": "sw",
    "Ukraine": "uk",
    "Croatia": "hr",
    "Slovakia": "sk",
    "Bulgaria": "bg",
    "Serbia": "sr",
    "Estonia": "et",
    "Latvia": "lv",
    "Lithuania": "lt",
    "Slovenia": "sl",
    "Luxembourg": "Luxembourg",
    "Malta": "Malta",
    "Cyprus": "Cyprus",
    "Iceland": "Iceland"
}

COUNTRY_LOCATIONS = {
    "United States": "United States",
    "KOREA": "kr",
    "United Kingdom": "United Kingdom",
    "Taiwan": "Taiwan",
    "Canada": "Canada",
    "Australia": "Australia",
    "Germany": "Germany",
    "France": "France",
    "Japan": "Japan",
    "China": "China",
    "India": "India",
    "Brazil": "Brazil",
    "Mexico": "Mexico",
    "Russia": "Russia",
    "Italy": "Italy",
    "Spain": "Spain",
    "Netherlands": "Netherlands",
    "Singapore": "Singapore",
    "Hong Kong": "Hong Kong",
    "Indonesia": "Indonesia",
    "Malaysia": "Malaysia",
    "Philippines": "Philippines",
    "Thailand": "Thailand",
    "Vietnam": "Vietnam",
    "Belgium": "Belgium",
    "Denmark": "Denmark",
    "Finland": "Finland",
    "Ireland": "Ireland",
    "Norway": "Norway",
    "Poland": "Poland",
    "Sweden": "Sweden",
    "Switzerland": "Switzerland",
    "Austria": "Austria",
    "Czech Republic": "Czech Republic",
    "Greece": "Greece",
    "Hungary": "Hungary",
    "Portugal": "Portugal",
    "Romania": "Romania",
    "Turkey": "Turkey",
    "Israel": "Israel",
    "Saudi Arabia": "Saudi Arabia",
    "United Arab Emirates": "United Arab Emirates",
    "South Africa": "South Africa",
    "Argentina": "Argentina",
    "Chile": "Chile",
    "Colombia": "Colombia",
    "Peru": "Peru",
    "Venezuela": "Venezuela",
    "New Zealand": "New Zealand",
    "Bangladesh": "Bangladesh",
    "Pakistan": "Pakistan",
    "Egypt": "Egypt",
    "Morocco": "Morocco",
    "Nigeria": "Nigeria",
    "Kenya": "Kenya",
    "Ukraine": "Ukraine",
    "Croatia": "Croatia",
    "Slovakia": "Slovakia",
    "Bulgaria": "Bulgaria",
    "Serbia": "Serbia",
    "Estonia": "et",
    "Latvia": "lv",
    "Lithuania": "lt",
    "Slovenia": "sl",
    "Luxembourg": "Luxembourg",
    "Malta": "Malta",
    "Cyprus": "Cyprus",
    "Iceland": "Iceland"
}


@lru_cache(maxsize=100)
def translate_query(query, country):
    """
    Use the unofficial Google Translation API to translate the query into the target country's language.
    If the query is already in English, or if translation fails, return the original query.
    """
    try:
        if is_english(query):
            return query
        
        if country in COUNTRY_LANGUAGES:
            if country == "South Korea":
                return query
            target_lang = COUNTRY_LANGUAGES[country]
            
            url = "https://translate.googleapis.com/translate_a/single"
            params = {
                "client": "gtx",
                "sl": "auto",
                "tl": target_lang,
                "dt": "t",
                "q": query
            }
            
            session = requests.Session()
            retries = Retry(total=3, backoff_factor=0.5)
            session.mount('https://', HTTPAdapter(max_retries=retries))
            
            response = session.get(url, params=params, timeout=(5, 10))
            translated_text = response.json()[0][0][0]
            return translated_text
        return query
        
    except Exception as e:
        print(f"Translation error: {str(e)}")
        return query

def is_english(text):
    """
    Check if a string is (mostly) English by verifying character code ranges.
    """
    return all(ord(char) < 128 for char in text.replace(' ', '').replace('-', '').replace('_', ''))

def search_serphouse(query, country, page=1, num_result=10):
    """
    Send a real-time search request to the SerpHouse API,
    specifying the 'news' tab (sort_by=date) for the given query.
    Returns a dict with 'results' or 'error'.
    """
    url = "https://api.serphouse.com/serp/live"
    
    now = datetime.utcnow()
    yesterday = now - timedelta(days=1)
    date_range = f"{yesterday.strftime('%Y-%m-%d')},{now.strftime('%Y-%m-%d')}"
    
    translated_query = translate_query(query, country)
    
    payload = {
        "data": {
            "q": translated_query,
            "domain": "google.com",
            "loc": COUNTRY_LOCATIONS.get(country, "United States"),
            "lang": COUNTRY_LANGUAGES.get(country, "en"),
            "device": "desktop",
            "serp_type": "news",
            "page": str(page),
            "num": "100",
            "date_range": date_range,
            "sort_by": "date"
        }
    }

    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": f"Bearer {API_KEY}"
    }

    try:
        session = requests.Session()
        
        retries = Retry(
            total=5,
            backoff_factor=1,
            status_forcelist=[500, 502, 503, 504, 429],
            allowed_methods=["POST"]
        )
        
        adapter = HTTPAdapter(max_retries=retries)
        session.mount('http://', adapter)
        session.mount('https://', adapter)
        
        response = session.post(
            url, 
            json=payload, 
            headers=headers, 
            timeout=(30, 30)
        )
        
        response.raise_for_status()
        return {"results": response.json(), "translated_query": translated_query}
        
    except requests.exceptions.Timeout:
        return {
            "error": "Search timed out. Please try again later.",
            "translated_query": query
        }
    except requests.exceptions.RequestException as e:
        return {
            "error": f"Error during search: {str(e)}",
            "translated_query": query
        }
    except Exception as e:
        return {
            "error": f"Unexpected error occurred: {str(e)}",
            "translated_query": query
        }

def format_results_from_raw(response_data):
    """
    Process the SerpHouse API response data and return (error_message, article_list).
    """
    if "error" in response_data:
        return "Error: " + response_data["error"], []

    try:
        results = response_data["results"]
        translated_query = response_data["translated_query"]
        
        news_results = results.get('results', {}).get('results', {}).get('news', [])
        if not news_results:
            return "No search results found.", []
        
        # Filter out Korean domains and Korean keywords (example filtering)
        korean_domains = [
            '.kr', 'korea', 'korean', 'yonhap', 'hankyung', 'chosun', 
            'donga', 'joins', 'hani', 'koreatimes', 'koreaherald'
        ]
        korean_keywords = [
            'korea', 'korean', 'seoul', 'busan', 'incheon', 'daegu', 
            'gwangju', 'daejeon', 'ulsan', 'sejong'
        ]

        filtered_articles = []
        for idx, result in enumerate(news_results, 1):
            url = result.get("url", result.get("link", "")).lower()
            title = result.get("title", "").lower()
            channel = result.get("channel", result.get("source", "")).lower()
            
            is_korean_content = (
                any(domain in url or domain in channel for domain in korean_domains) or
                any(keyword in title for keyword in korean_keywords)
            )
            
            # Exclude Korean content
            if not is_korean_content:
                filtered_articles.append({
                    "index": idx,
                    "title": result.get("title", "No Title"),
                    "link": url,
                    "snippet": result.get("snippet", "No Content"),
                    "channel": result.get("channel", result.get("source", "Unknown")),
                    "time": result.get("time", result.get("date", "Unknown Time")),
                    "image_url": result.get("img", result.get("thumbnail", "")),
                    "translated_query": translated_query
                })

        return "", filtered_articles
    except Exception as e:
        return f"Error processing results: {str(e)}", []

def serphouse_search(query, country):
    """
    Helper function to search and then format results.
    Returns (error_message, article_list).
    """
    response_data = search_serphouse(query, country)
    return format_results_from_raw(response_data)


# Refined, modern, and sleek custom CSS
css = """
body {
    background: linear-gradient(to bottom right, #f9fafb, #ffffff);
    font-family: 'Arial', sans-serif;
}

/* Hide default Gradio footer */
footer {
    visibility: hidden;
}

/* Header/Status area */
#status_area {
    background: rgba(255, 255, 255, 0.9);
    padding: 15px;
    border-bottom: 1px solid #ddd;
    margin-bottom: 20px;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}

/* Results area */
#results_area {
    padding: 10px;
    margin-top: 10px;
}

/* Tabs style */
.tabs {
    border-bottom: 2px solid #ddd !important;
    margin-bottom: 20px !important;
}

.tab-nav {
    border-bottom: none !important;
    margin-bottom: 0 !important;
}

.tab-nav button {
    font-weight: bold !important;
    padding: 10px 20px !important;
    background-color: #f0f0f0 !important;
    border: 1px solid #ccc !important;
    border-radius: 5px !important;
    margin-right: 5px !important;
}

.tab-nav button.selected {
    border-bottom: 2px solid #1f77b4 !important;
    background-color: #e6f2fa !important;
    color: #1f77b4 !important;
}

/* Status message styling */
#status_area .markdown-text {
    font-size: 1.1em;
    color: #2c3e50;
    padding: 10px 0;
}

/* Main container grouping */
.group {
    border: 1px solid #eee;
    padding: 15px;
    margin-bottom: 15px;
    border-radius: 5px;
    background: white;
    transition: all 0.3s ease;
    opacity: 0;
    transform: translateY(20px);
}
.group.visible {
    opacity: 1;
    transform: translateY(0);
}

/* Buttons */
.primary-btn {
    background: #1f77b4 !important;
    border: none !important;
    color: #fff !important;
    border-radius: 5px !important;
    padding: 10px 20px !important;
    cursor: pointer !important;
}
.primary-btn:hover {
    background: #155a8c !important;
}

.secondary-btn {
    background: #f0f0f0 !important;
    border: 1px solid #ccc !important;
    color: #333 !important;
    border-radius: 5px !important;
    padding: 10px 20px !important;
    cursor: pointer !important;
}
.secondary-btn:hover {
    background: #e0e0e0 !important;
}

/* Input fields */
.textbox {
    border: 1px solid #ddd !important;
    border-radius: 4px !important;
}

/* Progress bar container */
.progress-container {
    position: fixed;
    top: 0;
    left: 0;
    width: 100%;
    height: 6px;
    background: #e0e0e0;
    z-index: 1000;
}

/* Progress bar */
.progress-bar {
    height: 100%;
    background: linear-gradient(90deg, #2196F3, #00BCD4);
    box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
    transition: width 0.3s ease;
    animation: progress-glow 1.5s ease-in-out infinite;
}

/* Progress text */
.progress-text {
    position: fixed;
    top: 8px;
    left: 50%;
    transform: translateX(-50%);
    background: #333;
    color: white;
    padding: 4px 12px;
    border-radius: 15px;
    font-size: 14px;
    z-index: 1001;
    box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}

/* Progress bar animation */
@keyframes progress-glow {
    0% {
        box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
    }
    50% {
        box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
    }
    100% {
        box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
    }
}

/* Loading state */
.loading {
    opacity: 0.7;
    pointer-events: none;
    transition: opacity 0.3s ease;
}

/* Responsive design for smaller screens */
@media (max-width: 768px) {
    .group {
        padding: 10px;
        margin-bottom: 15px;
    }
    
    .progress-text {
        font-size: 12px;
        padding: 3px 10px;
    }
}

/* Example section styling */
.examples-table {
    margin-top: 10px !important;
    margin-bottom: 20px !important;
}

.examples-table button {
    background-color: #f0f0f0 !important;
    border: 1px solid #ddd !important;
    border-radius: 4px !important;
    padding: 5px 10px !important;
    margin: 2px !important;
    transition: all 0.3s ease !important;
}

.examples-table button:hover {
    background-color: #e0e0e0 !important;
    transform: translateY(-1px) !important;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
}

.examples-table .label {
    font-weight: bold !important;
    color: #444 !important;
    margin-bottom: 5px !important;
}
"""

# --- Gradio Interface (UI portion only) ---
with gr.Blocks(css=css, title="NewsAI Service") as iface:
    # Initialize the database first (keeping the call to init_db(), unchanged)
    init_db()
    
    with gr.Tabs():
        with gr.Tab("MoneyRadar"):
            # Added usage instructions and feature explanations here:
            gr.Markdown(
                """
                ## MoneyRadar: Implies scanning the market to spot money-making opportunities.

                **How to Use This Service**:
                1. **Custom Search**: Enter any keyword and choose a target country to fetch the latest news. The system automatically performs sentiment analysis and stores results in the database.
                2. **Generate Full Analysis Summary Report**: This will automatically:
                   - Search all predefined companies (in parallel),
                   - Store the articles and sentiment analysis,
                   - Display a combined overall report.
                3. **Individual Companies**:
                   - **Search**: Fetch and analyze the latest news from Google (for the chosen company).
                   - **Load from DB**: Retrieve the most recent saved news and sentiment analysis from the local database.

                **Features**:
                - **Real-time News Scraping**: Retrieves fresh articles from multiple regions.
                - **Advanced Sentiment Analysis**: Uses state-of-the-art NLP models via the OpenAI API.
                - **Data Persistence**: Automatically saves and retrieves search results in a local SQLite database for quick reference.
                - **Flexible**: Ability to search any keyword/country or select from predefined Big Tech & finance-related terms.

                ---
                """
            )
            
            # User custom search section
            with gr.Group():
                gr.Markdown("### Custom Search")
                with gr.Row():
                    with gr.Column():
                        user_input = gr.Textbox(
                            label="Enter your keyword",
                            placeholder="e.g., Apple, Samsung, etc.",
                            elem_classes="textbox"
                        )
                    with gr.Column():
                        country_selection = gr.Dropdown(
                            choices=list(COUNTRY_LOCATIONS.keys()),
                            value="United States",
                            label="Select Country"
                        )
                    with gr.Column():
                        custom_search_btn = gr.Button(
                            "Search", 
                            variant="primary", 
                            elem_classes="primary-btn"
                        )

                custom_search_output = gr.Markdown()
                
                custom_search_btn.click(
                    fn=search_custom,
                    inputs=[user_input, country_selection],
                    outputs=custom_search_output
                )

            # Button to generate a full report
            with gr.Row():
                full_report_btn = gr.Button(
                    "Generate Full Analysis Summary Report", 
                    variant="primary", 
                    elem_classes="primary-btn"
                )
                full_report_display = gr.Markdown()
            
            full_report_btn.click(
                fn=full_summary_report,
                outputs=full_report_display
            )
            
            # Individual search/load for companies in KOREAN_COMPANIES
            with gr.Column():
                for i in range(0, len(KOREAN_COMPANIES), 2):
                    with gr.Row():
                        # Left column
                        with gr.Column():
                            company = KOREAN_COMPANIES[i]
                            with gr.Group():
                                gr.Markdown(f"### {company}")
                                with gr.Row():
                                    search_btn = gr.Button(
                                        "Search", 
                                        variant="primary", 
                                        elem_classes="primary-btn"
                                    )
                                    load_btn = gr.Button(
                                        "Load from DB", 
                                        variant="secondary", 
                                        elem_classes="secondary-btn"
                                    )
                                result_display = gr.Markdown()
                                
                                search_btn.click(
                                    fn=lambda c=company: search_company(c),
                                    outputs=result_display
                                )
                                load_btn.click(
                                    fn=lambda c=company: load_company(c),
                                    outputs=result_display
                                )
                        
                        # Right column (if exists)
                        if i + 1 < len(KOREAN_COMPANIES):
                            with gr.Column():
                                company = KOREAN_COMPANIES[i + 1]
                                with gr.Group():
                                    gr.Markdown(f"### {company}")
                                    with gr.Row():
                                        search_btn = gr.Button(
                                            "Search", 
                                            variant="primary", 
                                            elem_classes="primary-btn"
                                        )
                                        load_btn = gr.Button(
                                            "Load from DB", 
                                            variant="secondary", 
                                            elem_classes="secondary-btn"
                                        )
                                    result_display = gr.Markdown()
                                    
                                    search_btn.click(
                                        fn=lambda c=company: search_company(c),
                                        outputs=result_display
                                    )
                                    load_btn.click(
                                        fn=lambda c=company: load_company(c),
                                        outputs=result_display
                                    )

    # Launch the Gradio interface
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        ssl_verify=False,
        show_error=True
    )