|
import numpy as np |
|
import onnx, onnx2torch, cv2 |
|
import torch |
|
from insightface.utils import face_align |
|
|
|
|
|
class ArcFaceRecognizer: |
|
def __init__(self, model_file=None, device='cpu', dtype=torch.float32): |
|
assert model_file is not None |
|
self.model_file = model_file |
|
|
|
self.device = device |
|
self.dtype = dtype |
|
self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype) |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
self.model.eval() |
|
|
|
self.input_mean = 127.5 |
|
self.input_std = 127.5 |
|
self.input_size = (112, 112) |
|
self.input_shape = ['None', 3, 112, 112] |
|
|
|
def get(self, img, face): |
|
aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0]) |
|
face.embedding = self.get_feat(aimg).flatten() |
|
return face.embedding |
|
|
|
def compute_sim(self, feat1, feat2): |
|
from numpy.linalg import norm |
|
feat1 = feat1.ravel() |
|
feat2 = feat2.ravel() |
|
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) |
|
return sim |
|
|
|
def get_feat(self, imgs): |
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
input_size = self.input_size |
|
|
|
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, |
|
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
|
|
blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype) |
|
net_out = self.model(blob_torch) |
|
return net_out[0].float().cpu() |
|
|
|
|
|
def distance2bbox(points, distance, max_shape=None): |
|
"""Decode distance prediction to bounding box. |
|
|
|
Args: |
|
points (Tensor): Shape (n, 2), [x, y]. |
|
distance (Tensor): Distance from the given point to 4 |
|
boundaries (left, top, right, bottom). |
|
max_shape (tuple): Shape of the image. |
|
|
|
Returns: |
|
Tensor: Decoded bboxes. |
|
""" |
|
x1 = points[:, 0] - distance[:, 0] |
|
y1 = points[:, 1] - distance[:, 1] |
|
x2 = points[:, 0] + distance[:, 2] |
|
y2 = points[:, 1] + distance[:, 3] |
|
if max_shape is not None: |
|
x1 = x1.clamp(min=0, max=max_shape[1]) |
|
y1 = y1.clamp(min=0, max=max_shape[0]) |
|
x2 = x2.clamp(min=0, max=max_shape[1]) |
|
y2 = y2.clamp(min=0, max=max_shape[0]) |
|
return np.stack([x1, y1, x2, y2], axis=-1) |
|
|
|
|
|
def distance2kps(points, distance, max_shape=None): |
|
"""Decode distance prediction to bounding box. |
|
|
|
Args: |
|
points (Tensor): Shape (n, 2), [x, y]. |
|
distance (Tensor): Distance from the given point to 4 |
|
boundaries (left, top, right, bottom). |
|
max_shape (tuple): Shape of the image. |
|
|
|
Returns: |
|
Tensor: Decoded bboxes. |
|
""" |
|
preds = [] |
|
for i in range(0, distance.shape[1], 2): |
|
px = points[:, i % 2] + distance[:, i] |
|
py = points[:, i % 2 + 1] + distance[:, i + 1] |
|
if max_shape is not None: |
|
px = px.clamp(min=0, max=max_shape[1]) |
|
py = py.clamp(min=0, max=max_shape[0]) |
|
preds.append(px) |
|
preds.append(py) |
|
return np.stack(preds, axis=-1) |
|
|
|
|
|
class FaceDetector: |
|
def __init__(self, model_file=None, dtype=torch.float32, device='cuda'): |
|
self.model_file = model_file |
|
self.taskname = 'detection' |
|
self.center_cache = {} |
|
self.nms_thresh = 0.4 |
|
self.det_thresh = 0.5 |
|
|
|
self.device = device |
|
self.dtype = dtype |
|
self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype) |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
self.model.eval() |
|
|
|
input_shape = (320, 320) |
|
self.input_size = input_shape |
|
self.input_shape = input_shape |
|
|
|
self.input_mean = 127.5 |
|
self.input_std = 128.0 |
|
self._anchor_ratio = 1.0 |
|
self._num_anchors = 1 |
|
self.fmc = 3 |
|
self._feat_stride_fpn = [8, 16, 32] |
|
self._num_anchors = 2 |
|
self.use_kps = True |
|
|
|
self.det_thresh = 0.5 |
|
self.nms_thresh = 0.4 |
|
|
|
def forward(self, img, threshold): |
|
scores_list = [] |
|
bboxes_list = [] |
|
kpss_list = [] |
|
input_size = tuple(img.shape[0:2][::-1]) |
|
blob = cv2.dnn.blobFromImage(img, 1.0 / self.input_std, input_size, |
|
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype) |
|
net_outs_torch = self.model(blob_torch) |
|
|
|
net_outs = list(map(lambda x: x.float().cpu().numpy(), net_outs_torch)) |
|
|
|
input_height = blob.shape[2] |
|
input_width = blob.shape[3] |
|
fmc = self.fmc |
|
for idx, stride in enumerate(self._feat_stride_fpn): |
|
scores = net_outs[idx] |
|
bbox_preds = net_outs[idx + fmc] |
|
bbox_preds = bbox_preds * stride |
|
if self.use_kps: |
|
kps_preds = net_outs[idx + fmc * 2] * stride |
|
height = input_height // stride |
|
width = input_width // stride |
|
K = height * width |
|
key = (height, width, stride) |
|
if key in self.center_cache: |
|
anchor_centers = self.center_cache[key] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) |
|
|
|
|
|
anchor_centers = (anchor_centers * stride).reshape((-1, 2)) |
|
if self._num_anchors > 1: |
|
anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) |
|
if len(self.center_cache) < 100: |
|
self.center_cache[key] = anchor_centers |
|
|
|
pos_inds = np.where(scores >= threshold)[0] |
|
bboxes = distance2bbox(anchor_centers, bbox_preds) |
|
pos_scores = scores[pos_inds] |
|
pos_bboxes = bboxes[pos_inds] |
|
scores_list.append(pos_scores) |
|
bboxes_list.append(pos_bboxes) |
|
if self.use_kps: |
|
kpss = distance2kps(anchor_centers, kps_preds) |
|
|
|
kpss = kpss.reshape((kpss.shape[0], -1, 2)) |
|
pos_kpss = kpss[pos_inds] |
|
kpss_list.append(pos_kpss) |
|
return scores_list, bboxes_list, kpss_list |
|
|
|
def detect(self, img, input_size=None, max_num=0, metric='default'): |
|
assert input_size is not None or self.input_size is not None |
|
input_size = self.input_size if input_size is None else input_size |
|
|
|
im_ratio = float(img.shape[0]) / img.shape[1] |
|
model_ratio = float(input_size[1]) / input_size[0] |
|
if im_ratio > model_ratio: |
|
new_height = input_size[1] |
|
new_width = int(new_height / im_ratio) |
|
else: |
|
new_width = input_size[0] |
|
new_height = int(new_width * im_ratio) |
|
det_scale = float(new_height) / img.shape[0] |
|
resized_img = cv2.resize(img, (new_width, new_height)) |
|
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) |
|
det_img[:new_height, :new_width, :] = resized_img |
|
|
|
scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) |
|
|
|
scores = np.vstack(scores_list) |
|
scores_ravel = scores.ravel() |
|
order = scores_ravel.argsort()[::-1] |
|
bboxes = np.vstack(bboxes_list) / det_scale |
|
if self.use_kps: |
|
kpss = np.vstack(kpss_list) / det_scale |
|
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) |
|
pre_det = pre_det[order, :] |
|
keep = self.nms(pre_det) |
|
det = pre_det[keep, :] |
|
if self.use_kps: |
|
kpss = kpss[order, :, :] |
|
kpss = kpss[keep, :, :] |
|
else: |
|
kpss = None |
|
if max_num > 0 and det.shape[0] > max_num: |
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - |
|
det[:, 1]) |
|
img_center = img.shape[0] // 2, img.shape[1] // 2 |
|
offsets = np.vstack([ |
|
(det[:, 0] + det[:, 2]) / 2 - img_center[1], |
|
(det[:, 1] + det[:, 3]) / 2 - img_center[0] |
|
]) |
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) |
|
if metric == 'max': |
|
values = area |
|
else: |
|
values = area - offset_dist_squared * 2.0 |
|
bindex = np.argsort( |
|
values)[::-1] |
|
bindex = bindex[0:max_num] |
|
det = det[bindex, :] |
|
if kpss is not None: |
|
kpss = kpss[bindex, :] |
|
return det, kpss |
|
|
|
def nms(self, dets): |
|
thresh = self.nms_thresh |
|
x1 = dets[:, 0] |
|
y1 = dets[:, 1] |
|
x2 = dets[:, 2] |
|
y2 = dets[:, 3] |
|
scores = dets[:, 4] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1 = np.maximum(x1[i], x1[order[1:]]) |
|
yy1 = np.maximum(y1[i], y1[order[1:]]) |
|
xx2 = np.minimum(x2[i], x2[order[1:]]) |
|
yy2 = np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1) |
|
h = np.maximum(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (areas[i] + areas[order[1:]] - inter) |
|
|
|
inds = np.where(ovr <= thresh)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|