ultpixgen / app.py
openfree's picture
Update app.py
553a69c verified
raw
history blame
11.6 kB
import os
import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
import subprocess
from huggingface_hub import hf_hub_download
from transformers import pipeline
# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--height', type=int, default=2560, help='image height')
parser.add_argument('--width', type=int, default=5120, help='image width')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
parser.add_argument('--config_c', type=str,
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
parser.add_argument('--prompt', type=str,
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
args = parser.parse_args()
return args
def clear_image():
return None
def load_message(height, width, seed, prompt, args, stage_a_tiled):
args.height = height
args.width = width
args.seed = seed
args.prompt = prompt + ' rich detail, 4k, high quality'
args.stage_a_tiled = stage_a_tiled
return args
def is_korean(text):
return any('\uac00' <= char <= '\ud7a3' for char in text)
def translate_if_korean(text):
if is_korean(text):
translated = translator(text, max_length=512)[0]['translation_text']
print(f"Translated from Korean: {text} -> {translated}")
return translated
return text
@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
global args
# Translate the prompt if it's in Korean
prompt = translate_if_korean(prompt)
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
batch_size = 1
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for _, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
return imgs[0]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1><center>UHD(MAX 5120 X 4096 Pixel) Image Gen</center></h1>")
with gr.Row():
prompt = gr.Textbox(
label="Text Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt in Korean or English",
container=False
)
polish_button = gr.Button("Submit", scale=0)
output_img = gr.Image(label="Output Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(
label="Random Seed",
value=123,
step=1,
minimum=0,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1536,
maximum=5120,
step=32,
value=4096
)
height = gr.Slider(
label="Height",
minimum=1536,
maximum=4096,
step=32,
value=2304
)
with gr.Row():
cfg = gr.Slider(
label="CFG",
minimum=3,
maximum=10,
step=0.1,
value=4
)
timesteps = gr.Slider(
label="Timesteps",
minimum=10,
maximum=50,
step=1,
value=20
)
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
clear_button = gr.Button("Clear!")
gr.Examples(
examples=[
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
"๋ˆˆ ๋ฎ์ธ ์‚ฐ๋งฅ์˜ ์žฅ์—„ํ•œ ์ „๊ฒฝ, ํ‘ธ๋ฅธ ํ•˜๋Š˜์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ํ•œ ๊ณ ์š”ํ•œ ํ˜ธ์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจ์Šต",
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
"์Šค์›จํ„ฐ๋ฅผ ์ž…์€ ์•…์–ด",
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
"๊ณจ๋“  ๋ฆฌํŠธ๋ฆฌ๋ฒ„ ๊ฐ•์•„์ง€๊ฐ€ ํ‘ธ๋ฅธ ์ž”๋””๋ฐญ์—์„œ ๋นจ๊ฐ„ ๊ณต์„ ์ซ“๋Š” ๊ท€์—ฌ์šด ๋ชจ์Šต",
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
],
inputs=[prompt],
outputs=[output_img],
examples_per_page=5
)
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
polish_button.click(clear_image, inputs=[], outputs=output_img)
def download_with_wget(url, save_path):
try:
subprocess.run(['wget', url, '-O', save_path], check=True)
print(f"Downloaded to {save_path}")
except subprocess.CalledProcessError as e:
print(f"Error downloading file: {e}")
def download_model():
urls = [
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
]
for file_url in urls:
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
download_model()
config_file = args.config_c
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
config_file_b = args.config_b
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
pretrained_path = args.pretrained_path
sdd = torch.load(pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
demo.launch(debug=True, share=True)