Spaces:
Running
Running
File size: 3,726 Bytes
7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf 7f9a235 d1cb523 7f9a235 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf eabde51 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf 7f9a235 a6d3fdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
def get_process_config():
return {
"process.numactl": gr.Checkbox(
value=False,
label="process.numactl",
info="Runs the model with numactl",
),
"process.numactl_kwargs": gr.Textbox(
value="",
label="process.numactl_kwargs",
info="Additional python dict of kwargs to pass to numactl",
),
}
def get_pytorch_config():
return {
"pytorch.torch_dtype": gr.Dropdown(
value="float32",
label="pytorch.torch_dtype",
choices=["bfloat16", "float16", "float32", "auto"],
info="The dtype to use for the model",
),
"pytorch.torch_compile": gr.Checkbox(
value=False,
label="pytorch.torch_compile",
info="Compiles the model with torch.compile",
),
}
def get_onnxruntime_config():
return {
"onnxruntime.export": gr.Checkbox(
value=True,
label="onnxruntime.export",
info="Exports the model to ONNX",
),
"onnxruntime.use_cache": gr.Checkbox(
value=True,
label="onnxruntime.use_cache",
info="Uses cached ONNX model if available",
),
"onnxruntime.use_merged": gr.Checkbox(
value=True,
label="onnxruntime.use_merged",
info="Uses merged ONNX model if available",
),
"onnxruntime.torch_dtype": gr.Dropdown(
value="float32",
label="onnxruntime.torch_dtype",
choices=["bfloat16", "float16", "float32", "auto"],
info="The dtype to use for the model",
),
}
def get_openvino_config():
return {
"openvino.export": gr.Checkbox(
value=True,
label="openvino.export",
info="Exports the model to ONNX",
),
"openvino.use_cache": gr.Checkbox(
value=True,
label="openvino.use_cache",
info="Uses cached ONNX model if available",
),
"openvino.use_merged": gr.Checkbox(
value=True,
label="openvino.use_merged",
info="Uses merged ONNX model if available",
),
"openvino.reshape": gr.Checkbox(
value=False,
label="openvino.reshape",
info="Reshapes the model to the input shape",
),
"openvino.half": gr.Checkbox(
value=False,
label="openvino.half",
info="Converts model to half precision",
),
}
def get_inference_config():
return {
"inference.warmup_runs": gr.Slider(
step=1,
value=10,
minimum=0,
maximum=10,
label="inference.warmup_runs",
info="Number of warmup runs",
),
"inference.duration": gr.Slider(
step=1,
value=10,
minimum=0,
maximum=10,
label="inference.duration",
info="Minimum duration of the benchmark in seconds",
),
"inference.iterations": gr.Slider(
step=1,
value=10,
minimum=0,
maximum=10,
label="inference.iterations",
info="Minimum number of iterations of the benchmark",
),
"inference.latency": gr.Checkbox(
value=True,
label="inference.latency",
info="Measures the latency of the model",
),
"inference.memory": gr.Checkbox(
value=False,
label="inference.memory",
info="Measures the peak memory consumption",
),
}
|