File size: 10,014 Bytes
d2c1af1
68f913d
 
 
 
 
 
0bc0c39
 
bf8e6b0
b1fe7a3
68f913d
0a8b37d
bf8e6b0
 
a09b56d
bf8e6b0
 
0a8b37d
 
bf8e6b0
0a8b37d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68f913d
 
0a8b37d
 
 
 
 
 
 
 
 
 
 
68f913d
0a8b37d
 
68f913d
0bc0c39
 
 
 
 
 
 
 
 
 
 
0a8b37d
0bc0c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8b37d
 
 
 
68f913d
a09b56d
bf8e6b0
 
 
 
68f913d
 
 
bf8e6b0
0a8b37d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17eb403
 
 
06fdcd6
17eb403
bf8e6b0
 
68ecf38
0bc0c39
bf8e6b0
68ecf38
0a8b37d
bf8e6b0
0a8b37d
 
 
bf8e6b0
 
0a8b37d
 
 
 
 
bf8e6b0
0a8b37d
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ecf38
bf8e6b0
 
0a8b37d
 
 
 
 
 
 
 
0a78f42
68f913d
 
bf8e6b0
0a8b37d
 
 
 
 
 
 
68f913d
 
0a8b37d
 
68f913d
0a8b37d
68f913d
0a8b37d
 
 
 
 
 
 
 
 
 
0bc0c39
b1fe7a3
0bc0c39
 
 
 
 
b1fe7a3
0a8b37d
0bc0c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8b37d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1af1
bf8e6b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st
import os
import pathlib
import pandas as pd
from collections import defaultdict
import json
import copy
import re
import tqdm
import plotly.express as px
from find_splitting_words import find_dividing_words

from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries


os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
st.set_page_config(layout="wide")

current_checkboxes = []
query_input = None

@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(path_or_buf=None, index=False, quotechar='"').encode('utf-8')


def create_histogram_relevant_docs(relevant_df):
    # turn results into a dataframe and then plot
    fig = px.histogram(relevant_df, x="relevant_docs")
    # make it fit in one column
    fig.update_layout(
        height=400,
        width=250
    )
    return fig


def get_current_data():
    cur_query_data = []
    cur_query = query_input.replace("\n", "\\n")
    for doc_id, checkbox in current_checkboxes:
        if checkbox:
            cur_query_data.append({
                "new_narrative": cur_query,
                "qid": st.session_state.selectbox_instance,
                "doc_id": doc_id,
                "is_relevant": 0
            })

    # return the data as a CSV pandas
    return convert_df(pd.DataFrame(cur_query_data))

@st.cache_data
def escape_markdown(text):
    # List of characters to escape
    # Adding backslash to the list of special characters to escape itself as well
    text = text.replace("``", "\"")
    special_chars = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '#', '+', '-', '.', '!', '|', "$"]
    
    # Escaping each special character
    escaped_text = "".join(f"\\{char}" if char in special_chars else char for char in text)
    
    return escaped_text

@st.cache_data
def highlight_text(text, splitting_words):
    # remove anything that will mess up markdown
    text = escape_markdown(text)
    changed = False
    if not len(splitting_words):
        return text, changed
    
    def replace_function(match):
        return f'<span style="background-color: #FFFF00">{match.group(0)}</span>'
    
    # Compile a single regular expression pattern for all splitting words
    pattern = '|'.join([re.escape(word) for word in splitting_words])
    
    # Perform case-insensitive replacement
    new_text, num_subs = re.subn(pattern, replace_function, text, flags=re.IGNORECASE)
    
    if num_subs > 0:
        changed = True

    return new_text, changed


if 'cur_instance_num' not in st.session_state:
    st.session_state.cur_instance_num = -1


def validate(config_option, file_loaded):
    if config_option != "None" and file_loaded is None:
        st.error("Please upload a file for " + config_option)
        st.stop()


with st.sidebar:
    st.title("Options")
    st.header("Upload corpus")
    corpus_file = st.file_uploader("Choose a file", key="corpus")
    corpus = load_local_corpus(corpus_file)
    st.header("Upload queries")
    queries_file = st.file_uploader("Choose a file", key="queries")
    queries = load_local_queries(queries_file)
    st.header("Upload qrels")
    qrels_file = st.file_uploader("Choose a file", key="qrels")
    qrels = load_local_qrels(qrels_file)

    ## make sure all qids in qrels are in queries and write out a warning if not
    if queries is not None and qrels is not None:
        missing_qids = set(qrels.keys()) - set(queries.keys()) | set(queries.keys()) - set(qrels.keys())
        if len(missing_qids) > 0:
            st.warning(f"The following qids in qrels are not in queries and will be deleted: {missing_qids}")
            # remove them from qrels and queries
            for qid in missing_qids:
                if qid in qrels:
                    del qrels[qid]
                if qid in queries:
                    del queries[qid]


        data = []
        for key, value in qrels.items():
            data.append({"relevant_docs": len(value), "qid": key})
        relevant_df = pd.DataFrame(data)

    z = st.header("Analysis Options")
    # sliderbar of how many Top N to choose
    n_relevant_docs = st.slider("Number of relevant docs", 1, 999, 300)


col1, col2 = st.columns([1, 3], gap="large")

if corpus is not None and queries is not None and qrels is not None:
    with st.sidebar:
        st.success("All files uploaded")

    with col1:
        # breakpoint()
        set_of_cols =  set(qrels.keys())
        container_for_nav = st.container()
        name_of_columns = sorted([item for item in set_of_cols])
        instances_to_use = name_of_columns
        st.title("Instances")
        
        def sync_from_drop():
            if st.session_state.selectbox_instance == "Overview":
                st.session_state.number_of_col = -1
                st.session_state.cur_instance_num = -1
            else:
                index_of_obj = name_of_columns.index(st.session_state.selectbox_instance)
                # print("Index of obj: ", index_of_obj, type(index_of_obj)) 
                st.session_state.number_of_col = index_of_obj
                st.session_state.cur_instance_num = index_of_obj

        def sync_from_number():
            st.session_state.cur_instance_num = st.session_state.number_of_col
            # print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col))
            if st.session_state.number_of_col == -1:
                st.session_state.selectbox_instance = "Overview"
            else:
                st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]


        number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
        selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
        st.divider()  
        # make pie plot showing how many relevant docs there are per query histogram
        st.header("Relevant Docs Per Query")
        plotly_chart = create_histogram_relevant_docs(relevant_df)
        st.plotly_chart(plotly_chart)
        st.divider()
        # now show the number with relevant docs less than `n_relevant_docs`
        st.header("Relevant Docs Less Than {}:".format(n_relevant_docs))
        st.subheader(f'{relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].shape[0]} Queries')
        st.text_area(",".join(relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].qid.tolist()))


    with col2:
        # get instance number
        inst_index = number_of_col

        if inst_index >= 0:
            inst_num = instances_to_use[inst_index]
            
            st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Editor</h1>", unsafe_allow_html=True)


            container = st.container()


            container.divider()

            container.subheader(f"Query")
            
            query_text = queries[str(inst_num)].strip()
            query_input = container.text_area(f"QID: {inst_num}", query_text)
            container.divider()

            ## Documents
            # relevant
            relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
            doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
            splitting_words = find_dividing_words([item[1] + " " + item[2] for item in doc_texts])

            # make a selectbox of these splitting words (allow multiple)
            container.subheader("Splitting Words")
            container.text("Select words that are relevant to the query")
            splitting_word_select = container.multiselect("Splitting Words", splitting_words, key="splitting_words")
            container.divider()

            current_checkboxes = []
            total_changed = 0
            highlighted_texts = []
            highlighted_titles = []
            for (docid, title, text) in tqdm.tqdm(doc_texts):
                if not len(splitting_word_select):
                    highlighted_texts.append(text)
                    highlighted_titles.append(title)
                    continue
                highlighted_text, changed_text = highlight_text(text, splitting_word_select)
                highlighted_title, changed_title = highlight_text(title, splitting_word_select)
                highlighted_titles.append(highlighted_title)
                highlighted_texts.append(highlighted_text)
                total_changed += int(int(changed_text) or int(changed_title))

            container.subheader(f"Relevant Documents ({len(list(qrels[str(inst_num)].keys()))})")
            container.subheader(f"Total have these words: {total_changed}")

            container.divider()
                
            for i, (docid, title, text) in enumerate(doc_texts):
                container.markdown(f"## {docid}")
                container.markdown(f"#### {highlighted_titles[i]}", True)
                container.markdown(f"\n{highlighted_texts[i]}", True)
                current_checkboxes.append((docid, container.checkbox(f'{docid} is Non-Relevant', key=docid)))


            container.divider()
            if st.checkbox("Download data as CSV"):
                st.download_button(
                    label="Download data as CSV",
                    data=get_current_data(),
                    file_name=f'annotation_query_{inst_num}.csv',
                    mime='text/csv',
                )

        # none checked
        elif inst_index < 0:
            st.title("Overview")

    

else:
    st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")