File size: 7,523 Bytes
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09b56d
 
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09b56d
 
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09b56d
 
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09b56d
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
68ecf38
 
 
 
 
 
bf8e6b0
 
 
a09b56d
bf8e6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ecf38
bf8e6b0
 
 
 
 
 
 
68ecf38
 
bf8e6b0
 
 
68ecf38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf8e6b0
68ecf38
bf8e6b0
 
68ecf38
 
 
 
 
 
 
bf8e6b0
 
 
 
 
 
68ecf38
bf8e6b0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
import os
import pathlib
import beir
from beir import util
from beir.datasets.data_loader import GenericDataLoader
import pytrec_eval
import pandas as pd
from collections import defaultdict
import json
import copy
import ir_datasets


from constants import BEIR, IR_DATASETS, LOCAL_DATASETS


@st.cache_data
def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]):
    if corpus_file is None:
        return None
    did2text = {}
    id_key = "_id"
    with corpus_file as f:
        for idx, line in enumerate(f):
            uses_bytes = not (type(line) == str)
            if uses_bytes:
                if idx == 0 and "doc_id" in line.decode("utf-8"):
                    continue
                inst = json.loads(line.decode("utf-8"))
            else:
                if idx == 0 and "doc_id" in line:
                    continue
                inst = json.loads(line)
            all_text = " ".join([inst[col] for col in columns_to_combine if col in inst])
            if id_key not in inst:
                id_key = "doc_id"
            did2text[inst[id_key]] = {
                "text": all_text,
                "title": inst["title"] if "title" in inst else "",
            }
    return did2text


@st.cache_data
def load_local_queries(queries_file):
    if queries_file is None:
        return None
    qid2text = {}
    id_key = "_id"
    with queries_file as f:
        for idx, line in enumerate(f):
            uses_bytes = not (type(line) == str)
            if uses_bytes:
                if idx == 0 and "query_id" in line.decode("utf-8"):
                    continue
                inst = json.loads(line.decode("utf-8"))
            else:
                if idx == 0 and "query_id" in line:
                    continue
                inst = json.loads(line)
            if id_key not in inst:
                id_key = "query_id"
            qid2text[inst[id_key]] = inst["text"]
    return qid2text


@st.cache_data
def load_local_qrels(qrels_file):
    if qrels_file is None:
        return None
    qid2did2label = defaultdict(dict)
    with qrels_file as f:
        for idx, line in enumerate(f):
            uses_bytes = not (type(line) == str)
            if uses_bytes:
                if idx == 0 and "qid" in line.decode("utf-8") or "query-id" in line.decode("utf-8"):
                    continue
                cur_line = line.decode("utf-8")
            else:
                if idx == 0 and "qid" in line or "query-id" in line:
                    continue
                cur_line = line
            try:
                qid, _, doc_id, label = cur_line.split()
            except:
                qid, doc_id, label = cur_line.split()
            qid2did2label[str(qid)][str(doc_id)] = int(label)

    return qid2did2label


@st.cache_data
def load_run(f_run):
    run = pytrec_eval.parse_run(copy.deepcopy(f_run))
    # convert bytes to strings for keys
    new_run = defaultdict(dict)
    for key, sub_dict in run.items():
        new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()}

    run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t")
    run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"]
    run_pandas.doc_id = run_pandas.doc_id.astype(str)
    run_pandas.qid = run_pandas.qid.astype(str)
    run_pandas["rank"] = run_pandas["rank"].astype(int)
    run_pandas.score = run_pandas.score.astype(float)
    all_groups = []
    for qid, sub_df in run_pandas.groupby("qid"):
        sub_df.sort_values(["score", "doc_id"], ascending=[False, False])
        sub_df["rank"] = list(range(1, len(sub_df) + 1))
        all_groups.append(sub_df)
    run_pandas = pd.concat(all_groups)
    return new_run, run_pandas


@st.cache_data
def load_jsonl(f):
    did2text = defaultdict(list)
    sub_did2text = {}

    for idx, line in enumerate(f):
        inst = json.loads(line)
        if "question" in inst:
            docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"]
            did2text[docid].append(inst["question"])
        elif "text" in inst:
            docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
            did2text[docid].append(inst["text"])
            sub_did2text[inst["did"]] = inst["text"]
        elif "query" in inst:
            docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
            did2text[docid].append(inst["query"])
        else:
            breakpoint()
            raise NotImplementedError("Need to handle this case")
                
    return did2text, sub_did2text


@st.cache_data(persist="disk")
def get_beir(dataset: str):
    url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
    out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
    data_path = util.download_and_unzip(url, out_dir)
    return GenericDataLoader(data_folder=data_path).load(split="test")


@st.cache_data(persist="disk")
def get_ir_datasets(dataset_name: str, input_fields_doc: str = None, input_fields_query: str = None):
    dataset = ir_datasets.load(dataset_name)
    queries = {}
    for qid, query in dataset.queries_iter():
        if input_fields_query is None: 
            if type(query) == str:
                queries[qid] = query
            else:
                # get all fields that exist in query
                all_fields = {field: getattr(query, field) for field in query._fields}
                # put all fields into a single string
                queries[qid] = " ".join([str(v) for v in all_fields.values()])
        else:
            all_fields = {field: getattr(query, field) for field in input_fields_query}
            queries[qid] = " ".join([str(v) for v in all_fields.values()])

    corpus = {}
    for doc in dataset.docs_iter():
        if input_fields_doc is None:
            if type(doc) == str:
                corpus[doc.doc_id] = {"text": doc}
            else: # get all fields that exist in query
                all_fields = {field: getattr(doc, field) for field in doc._fields}
                corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}
        else:
            all_fields = {field: getattr(doc, field) for field in input_fields_doc}
            corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}

    # return corpus, queries, qrels
    return corpus, queries, dataset.qrels_dict()


@st.cache_data(persist="disk")
def get_dataset(dataset_name: str, input_fields_doc, input_fields_query):
    if type(input_fields_doc) == str:
        input_fields_doc = input_fields_doc.strip().split(",")
    if type(input_fields_query) == str:
        input_fields_query = input_fields_query.strip().split(",")

    if dataset_name == "":
        return {}, {}, {}
    
    if dataset_name in BEIR:
        return get_beir(dataset_name)
    elif dataset_name in IR_DATASETS:
        return get_ir_datasets(dataset_name, input_fields_doc, input_fields_query)
    elif dataset_name in LOCAL_DATASETS:
        base_path = f"local_datasets/{dataset_name}"
        corpus_file = open(f"{base_path}/corpus.jsonl", "r")
        queries_file = open(f"{base_path}/queries.jsonl", "r")
        qrels_file = open(f"{base_path}/qrels/test.tsv", "r")
        return load_local_corpus(corpus_file), load_local_queries(queries_file), load_local_qrels(qrels_file)
    else:
        raise NotImplementedError("Dataset not implemented")