annotate-relevance / analysis.py
Orion Weller
updates, charts, ir_datasetes
68ecf38
raw
history blame
5.41 kB
import pandas as pd
import numpy as np
import os
import torch
from transformers import pipeline
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from captum.attr import LayerIntegratedGradients, TokenReferenceBase, visualization
from captum.attr import visualization as viz
from captum import attr
from captum.attr._utils.visualization import format_word_importances, format_special_tokens, _get_color
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
def results_to_df(results: dict, metric_name: str):
metric_scores = []
for topic, results_dict in results.items():
for metric_name_cur, metric_value in results_dict.items():
if metric_name == metric_name_cur:
metric_scores.append(metric_value)
return pd.DataFrame({metric_name: metric_scores})
def create_boxplot_1df(results: dict, metric_name: str):
df = results_to_df(results, metric_name)
fig = px.box(df, y=metric_name)
return fig
def create_boxplot_2df(results1, results2, metric_name):
df1 = results_to_df(results1, metric_name)
df2 = results_to_df(results2, metric_name)
df2["Run"] = "Run 2"
df1["Run"] = "Run 1"
df = pd.concat([df1, df2])
# Create distplot with custom bin_size
fig = px.histogram(df, x=metric_name, color="Run", marginal="box", hover_data=df.columns)
return fig
def create_boxplot_diff(results1, results2, metric_name):
df1 = results_to_df(results1, metric_name)
df2 = results_to_df(results2, metric_name)
diff = df1[metric_name] - df2[metric_name]
x_axis = f"Difference in {metric_name} from 1 to 2"
fig = px.histogram(pd.DataFrame({x_axis: diff}), x=x_axis, marginal="box")
return fig
def summarize_attributions(attributions):
attributions = attributions.sum(dim=-1).squeeze(0)
attributions = attributions / torch.norm(attributions)
return attributions
def get_words(words, importances):
words_colored = []
for word, importance in zip(words, importances[: len(words)]):
word = format_special_tokens(word)
color = _get_color(importance)
unwrapped_tag = '<span style="background-color: {color}; opacity:1.0; line-height:1.75">{word}</span>'.format(
color=color, word=word
)
words_colored.append(unwrapped_tag)
return words_colored
@st.cache_resource
def get_model(model_name: str):
if "MonoT5" in model_name:
if model_name == "MonoT5-Small":
pipe = pipeline('text2text-generation',
model='castorini/monot5-small-msmarco-10k',
tokenizer='castorini/monot5-small-msmarco-10k',
device='cpu')
elif model_name == "MonoT5-3B":
pipe = pipeline('text2text-generation',
model='castorini/monot5-3b-msmarco-10k',
tokenizer='castorini/monot5-3b-msmarco-10k',
device='cpu')
def formatter(query, doc):
return f"Query: {query} Document: {doc} Relevant:"
return pipe, formatter
def prep_func(pipe, formatter):
# variables that only need to be run once
decoder_input_ids = pipe.tokenizer(["<pad>"], return_tensors="pt", add_special_tokens=False, truncation=True).input_ids.to('cpu')
decoder_embedding_layer = pipe.model.base_model.decoder.embed_tokens
decoder_inputs_emb = decoder_embedding_layer(decoder_input_ids)
token_false_id = pipe.tokenizer.get_vocab()['▁false']
token_true_id = pipe.tokenizer.get_vocab()["▁true"]
# this function needs to be run for each combination
@st.cache_data
def get_saliency(query, doc):
input_ids = pipe.tokenizer(
[formatter(query, doc)],
padding=False,
truncation=True,
return_tensors="pt",
max_length=pipe.tokenizer.model_max_length,
)["input_ids"].to('cpu')
embedding_layer = pipe.model.base_model.encoder.embed_tokens
inputs_emb = embedding_layer(input_ids)
def forward_from_embeddings(inputs_embeds, decoder_inputs_embeds):
logits = pipe.model.forward(inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds)['logits'][:, -1, :]
batch_scores = logits[:, [token_false_id, token_true_id]]
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp() # relevant token
return scores
lig = attr.Saliency(forward_from_embeddings)
attributions_ig, delta = lig.attribute(
inputs=(inputs_emb, decoder_inputs_emb)
)
attributions_normed = summarize_attributions(attributions_ig)
return "\n".join(get_words(pipe.tokenizer.convert_ids_to_tokens(input_ids.squeeze(0).tolist()), attributions_normed))
return get_saliency
if __name__ == "__main__":
query = "how to add dll to visual studio?"
doc = "StackOverflow In the days of 16-bit Windows, a WPARAM was a 16-bit word, while LPARAM was a 32-bit long. These distinctions went away in Win32; they both became 32-bit values. ... WPARAM is defined as UINT_PTR , which in 64-bit Windows is an unsigned, 64-bit value."
model, formatter = get_model("MonoT5")
get_saliency = prep_func(model, formatter)
print(get_saliency(query, doc))