Spaces:
Running
on
Zero
Running
on
Zero
chore: lpw, image size
Browse files
app.py
CHANGED
@@ -1,11 +1,16 @@
|
|
|
|
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
import random
|
5 |
-
import
|
|
|
|
|
|
|
|
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
-
|
|
|
9 |
|
10 |
try:
|
11 |
from dotenv import load_dotenv
|
@@ -38,12 +43,16 @@ dart = dart.requires_grad_(False)
|
|
38 |
dart = torch.compile(dart)
|
39 |
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
|
40 |
|
41 |
-
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
42 |
pipe = pipe.to(device)
|
43 |
|
44 |
|
45 |
MAX_SEED = np.iinfo(np.int32).max
|
46 |
-
MAX_IMAGE_SIZE =
|
47 |
|
48 |
TEMPLATE = (
|
49 |
"<|bos|>"
|
@@ -59,6 +68,20 @@ TEMPLATE = (
|
|
59 |
"<general>"
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
@torch.inference_mode
|
64 |
def generate_prompt(aspect_ratio: str):
|
@@ -66,7 +89,7 @@ def generate_prompt(aspect_ratio: str):
|
|
66 |
TEMPLATE.format(aspect_ratio=aspect_ratio),
|
67 |
return_tensors="pt",
|
68 |
).input_ids
|
69 |
-
print("input_ids", input_ids)
|
70 |
|
71 |
output_ids = dart.generate(
|
72 |
input_ids,
|
@@ -80,10 +103,13 @@ def generate_prompt(aspect_ratio: str):
|
|
80 |
|
81 |
generated = output_ids[len(input_ids) :]
|
82 |
decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
|
83 |
-
print("decoded", decoded)
|
84 |
|
85 |
return decoded
|
86 |
|
|
|
|
|
|
|
87 |
@spaces.GPU
|
88 |
def generate_image(
|
89 |
prompt: str,
|
@@ -93,7 +119,6 @@ def generate_image(
|
|
93 |
height: int,
|
94 |
guidance_scale: float,
|
95 |
num_inference_steps: int,
|
96 |
-
progress=gr.Progress(track_tqdm=True),
|
97 |
):
|
98 |
image = pipe(
|
99 |
prompt=prompt,
|
@@ -108,6 +133,7 @@ def generate_image(
|
|
108 |
return image
|
109 |
|
110 |
def on_generate(
|
|
|
111 |
negative_prompt: str,
|
112 |
seed,
|
113 |
randomize_seed,
|
@@ -115,12 +141,15 @@ def on_generate(
|
|
115 |
height,
|
116 |
guidance_scale,
|
117 |
num_inference_steps,
|
|
|
118 |
):
|
119 |
if randomize_seed:
|
120 |
seed = random.randint(0, MAX_SEED)
|
121 |
generator = torch.Generator().manual_seed(seed)
|
122 |
|
123 |
-
|
|
|
|
|
124 |
print(prompt)
|
125 |
|
126 |
image = generate_image(
|
@@ -155,15 +184,21 @@ with gr.Blocks(css=css) as demo:
|
|
155 |
result = gr.Image(label="Result", show_label=False)
|
156 |
|
157 |
with gr.Accordion("Generation details", open=False):
|
158 |
-
prompt_txt = gr.Textbox("Generated prompt", interactive=False)
|
159 |
|
160 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
negative_prompt = gr.Text(
|
162 |
label="Negative prompt",
|
163 |
max_lines=1,
|
164 |
placeholder="Enter a negative prompt",
|
165 |
visible=False,
|
166 |
-
value="
|
167 |
)
|
168 |
|
169 |
seed = gr.Slider(
|
@@ -214,6 +249,7 @@ with gr.Blocks(css=css) as demo:
|
|
214 |
triggers=[run_button.click],
|
215 |
fn=on_generate,
|
216 |
inputs=[
|
|
|
217 |
negative_prompt,
|
218 |
seed,
|
219 |
randomize_seed,
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
import os
|
|
|
|
|
4 |
import random
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
from diffusers import DiffusionPipeline
|
11 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
|
15 |
try:
|
16 |
from dotenv import load_dotenv
|
|
|
43 |
dart = torch.compile(dart)
|
44 |
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
|
45 |
|
46 |
+
pipe = DiffusionPipeline.from_pretrained(
|
47 |
+
IMAGE_MODEL_REPO_ID,
|
48 |
+
torch_dtype=torch_dtype,
|
49 |
+
custom_pipeline="lpw_stable_diffusion_xl"
|
50 |
+
)
|
51 |
pipe = pipe.to(device)
|
52 |
|
53 |
|
54 |
MAX_SEED = np.iinfo(np.int32).max
|
55 |
+
MAX_IMAGE_SIZE = 2048
|
56 |
|
57 |
TEMPLATE = (
|
58 |
"<|bos|>"
|
|
|
68 |
"<general>"
|
69 |
)
|
70 |
|
71 |
+
def get_aspect_ratio(width: int, height: int) -> str:
|
72 |
+
ar = width / height
|
73 |
+
|
74 |
+
if ar <= 1 / math.sqrt(3):
|
75 |
+
return "<|aspect_ratio:ultra_wide|>"
|
76 |
+
elif ar <= 8 / 9: #
|
77 |
+
return "<|aspect_ratio:wide|>"
|
78 |
+
elif ar < 9 / 8:
|
79 |
+
return "<|aspect_ratio:square|>"
|
80 |
+
elif ar < math.sqrt(3):
|
81 |
+
return "<|aspect_ratio:tall|>"
|
82 |
+
else:
|
83 |
+
return "<|aspect_ratio:ultra_tall|>"
|
84 |
+
|
85 |
|
86 |
@torch.inference_mode
|
87 |
def generate_prompt(aspect_ratio: str):
|
|
|
89 |
TEMPLATE.format(aspect_ratio=aspect_ratio),
|
90 |
return_tensors="pt",
|
91 |
).input_ids
|
92 |
+
print("input_ids:", input_ids)
|
93 |
|
94 |
output_ids = dart.generate(
|
95 |
input_ids,
|
|
|
103 |
|
104 |
generated = output_ids[len(input_ids) :]
|
105 |
decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
|
106 |
+
print("decoded:", decoded)
|
107 |
|
108 |
return decoded
|
109 |
|
110 |
+
def format_prompt(prompt: str, prompt_suffix: str):
|
111 |
+
return f"{prompt}, {prompt_suffix}"
|
112 |
+
|
113 |
@spaces.GPU
|
114 |
def generate_image(
|
115 |
prompt: str,
|
|
|
119 |
height: int,
|
120 |
guidance_scale: float,
|
121 |
num_inference_steps: int,
|
|
|
122 |
):
|
123 |
image = pipe(
|
124 |
prompt=prompt,
|
|
|
133 |
return image
|
134 |
|
135 |
def on_generate(
|
136 |
+
suffix: str,
|
137 |
negative_prompt: str,
|
138 |
seed,
|
139 |
randomize_seed,
|
|
|
141 |
height,
|
142 |
guidance_scale,
|
143 |
num_inference_steps,
|
144 |
+
progress=gr.Progress(track_tqdm=True),
|
145 |
):
|
146 |
if randomize_seed:
|
147 |
seed = random.randint(0, MAX_SEED)
|
148 |
generator = torch.Generator().manual_seed(seed)
|
149 |
|
150 |
+
ar = get_aspect_ratio(width, height)
|
151 |
+
prompt = generate_prompt(ar)
|
152 |
+
prompt = format_prompt(prompt, suffix)
|
153 |
print(prompt)
|
154 |
|
155 |
image = generate_image(
|
|
|
184 |
result = gr.Image(label="Result", show_label=False)
|
185 |
|
186 |
with gr.Accordion("Generation details", open=False):
|
187 |
+
prompt_txt = gr.Textbox(label="Generated prompt", interactive=False)
|
188 |
|
189 |
with gr.Accordion("Advanced Settings", open=False):
|
190 |
+
prompt_suffix = gr.Text(
|
191 |
+
label="Prompt suffix",
|
192 |
+
max_lines=1,
|
193 |
+
visible=False,
|
194 |
+
value="masterpiece, best quality",
|
195 |
+
)
|
196 |
negative_prompt = gr.Text(
|
197 |
label="Negative prompt",
|
198 |
max_lines=1,
|
199 |
placeholder="Enter a negative prompt",
|
200 |
visible=False,
|
201 |
+
value="worst quality, bad quality, low quality, lowres, displeasing, very displeasing, bad anatomy, bad hands, scan artifacts, signature, username, jpeg artifacts, guro, extra digits, fewer digits",
|
202 |
)
|
203 |
|
204 |
seed = gr.Slider(
|
|
|
249 |
triggers=[run_button.click],
|
250 |
fn=on_generate,
|
251 |
inputs=[
|
252 |
+
prompt_suffix,
|
253 |
negative_prompt,
|
254 |
seed,
|
255 |
randomize_seed,
|