Spaces:
Running
on
Zero
Running
on
Zero
Fix: Ensure Object is Correctly Placed in Scene without Texturing when the texture is not provided
#4
by
moulichand
- opened
pops.py
CHANGED
@@ -1,231 +1,230 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
|
7 |
-
|
8 |
-
from model import pops_utils
|
9 |
-
from model.pipeline_pops import pOpsPipeline
|
10 |
-
|
11 |
-
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
|
12 |
-
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
|
13 |
-
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
|
14 |
-
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
|
15 |
-
prior_scene_repo: str = 'models/scene/learned_prior.pth'
|
16 |
-
prior_repo = "pOpsPaper/operators"
|
17 |
-
|
18 |
-
# gpu = torch.device('cuda')
|
19 |
-
# cpu = torch.device('cpu')
|
20 |
-
|
21 |
-
class PopsPipelines:
|
22 |
-
def __init__(self):
|
23 |
-
weight_dtype = torch.float16
|
24 |
-
self.weight_dtype = weight_dtype
|
25 |
-
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
-
self.device = 'cuda' #device
|
27 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
28 |
-
subfolder='image_encoder',
|
29 |
-
torch_dtype=weight_dtype).eval()
|
30 |
-
self.image_encoder.requires_grad_(False)
|
31 |
-
|
32 |
-
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
|
33 |
-
subfolder='image_processor')
|
34 |
-
|
35 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
|
36 |
-
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
37 |
-
subfolder='text_encoder',
|
38 |
-
torch_dtype=weight_dtype).eval().to(device)
|
39 |
-
|
40 |
-
# Load full model for vis
|
41 |
-
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
|
42 |
-
subfolder='unet').to(torch.float16).to(device)
|
43 |
-
|
44 |
-
|
45 |
-
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
|
46 |
-
torch_dtype=torch.float16)
|
47 |
-
self.decoder = self.decoder.to(device)
|
48 |
-
|
49 |
-
|
50 |
-
self.priors_dict = {
|
51 |
-
'texturing':{'repo':prior_texture_repo},
|
52 |
-
'instruct': {'repo': prior_instruct_repo},
|
53 |
-
'scene': {'repo':prior_scene_repo}
|
54 |
-
}
|
55 |
-
|
56 |
-
for prior_type in self.priors_dict:
|
57 |
-
prior_path = self.priors_dict[prior_type]['repo']
|
58 |
-
prior = PriorTransformer.from_pretrained(
|
59 |
-
kandinsky_prior_repo, subfolder="prior"
|
60 |
-
)
|
61 |
-
|
62 |
-
# Load from huggingface
|
63 |
-
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
|
64 |
-
prior_state_dict = torch.load(prior_path, map_location=device)
|
65 |
-
prior.load_state_dict(prior_state_dict, strict=False)
|
66 |
-
|
67 |
-
prior.eval()
|
68 |
-
prior = prior.to(weight_dtype)
|
69 |
-
|
70 |
-
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
|
71 |
-
prior=prior,
|
72 |
-
image_encoder=self.image_encoder,
|
73 |
-
torch_dtype=torch.float16)
|
74 |
-
|
75 |
-
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
|
76 |
-
|
77 |
-
def process_image(self, input_path):
|
78 |
-
if input_path is None:
|
79 |
-
return None
|
80 |
-
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
|
81 |
-
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
|
82 |
-
self.weight_dtype)
|
83 |
-
|
84 |
-
return image
|
85 |
-
|
86 |
-
def process_text(self, text):
|
87 |
-
self.text_encoder.to('cuda')
|
88 |
-
text_inputs = self.tokenizer(
|
89 |
-
text,
|
90 |
-
padding="max_length",
|
91 |
-
max_length=self.tokenizer.model_max_length,
|
92 |
-
truncation=True,
|
93 |
-
return_tensors="pt",
|
94 |
-
)
|
95 |
-
mask = text_inputs.attention_mask.bool() # [0]
|
96 |
-
|
97 |
-
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
|
98 |
-
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
99 |
-
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
|
100 |
-
self.text_encoder.to('cpu')
|
101 |
-
return text_encoder_concat
|
102 |
-
|
103 |
-
def run_binary(self, input_a, input_b, prior_type):
|
104 |
-
# Move pipeline to GPU
|
105 |
-
pipeline = self.priors_dict[prior_type]['pipeline']
|
106 |
-
pipeline.to('cuda')
|
107 |
-
self.image_encoder.to('cuda')
|
108 |
-
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
|
109 |
-
self.image_encoder,
|
110 |
-
pipeline.prior.clip_mean.detach(),
|
111 |
-
pipeline.prior.clip_std.detach())
|
112 |
-
|
113 |
-
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
114 |
-
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
115 |
-
|
116 |
-
guidance_scale = 1.0
|
117 |
-
if prior_type == 'texturing':
|
118 |
-
guidance_scale = 8.0
|
119 |
-
|
120 |
-
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
121 |
-
negative_input_embeds=negative_input_embeds,
|
122 |
-
negative_input_hidden_states=negative_hidden_states,
|
123 |
-
num_inference_steps=25,
|
124 |
-
num_images_per_prompt=1,
|
125 |
-
guidance_scale=guidance_scale)
|
126 |
-
|
127 |
-
# Optional
|
128 |
-
if prior_type == 'scene':
|
129 |
-
# Scene is the closet to what avg represents for a background image so incorporate that as well
|
130 |
-
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
|
131 |
-
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
|
132 |
-
alpha = 0.4
|
133 |
-
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
|
134 |
-
|
135 |
-
# Move pipeline to CPU
|
136 |
-
pipeline.to('cpu')
|
137 |
-
self.image_encoder.to('cpu')
|
138 |
-
return img_emb
|
139 |
-
|
140 |
-
def run_instruct(self, input_a, text):
|
141 |
-
|
142 |
-
text_encodings = self.process_text(text)
|
143 |
-
|
144 |
-
# Move pipeline to GPU
|
145 |
-
instruct_pipeline = self.priors_dict['instruct']['pipeline']
|
146 |
-
instruct_pipeline.to('cuda')
|
147 |
-
self.image_encoder.to('cuda')
|
148 |
-
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
|
149 |
-
self.image_encoder,
|
150 |
-
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
|
151 |
-
concat_hidden_states=text_encodings)
|
152 |
-
|
153 |
-
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
154 |
-
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
155 |
-
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
156 |
-
negative_input_embeds=negative_input_embeds,
|
157 |
-
negative_input_hidden_states=negative_hidden_states,
|
158 |
-
num_inference_steps=25,
|
159 |
-
num_images_per_prompt=1,
|
160 |
-
guidance_scale=1.0)
|
161 |
-
|
162 |
-
# Move pipeline to CPU
|
163 |
-
instruct_pipeline.to('cpu')
|
164 |
-
self.image_encoder.to('cpu')
|
165 |
-
return img_emb
|
166 |
-
|
167 |
-
def render(self, img_emb):
|
168 |
-
self.decoder.to('cuda')
|
169 |
-
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
|
170 |
-
num_inference_steps=50, height=512,
|
171 |
-
width=512, guidance_scale=4).images
|
172 |
-
self.decoder.to('cpu')
|
173 |
-
return images[0]
|
174 |
-
|
175 |
-
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
|
176 |
-
# Process both inputs
|
177 |
-
image_object = self.process_image(image_object_path)
|
178 |
-
image_texture = self.process_image(image_texture_path)
|
179 |
-
|
180 |
-
if image_object is None:
|
181 |
-
raise gr.Error('Object image is required')
|
182 |
-
|
183 |
-
current_emb = None
|
184 |
-
|
185 |
-
if image_texture is None:
|
186 |
-
instruct_input = image_object
|
187 |
-
else:
|
188 |
-
# Run texturing
|
189 |
-
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
|
190 |
-
instruct_input = current_emb.image_embeds
|
191 |
-
|
192 |
-
if text_instruct != '':
|
193 |
-
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
|
194 |
-
|
195 |
-
if current_emb is None:
|
196 |
-
raise gr.Error('At least one of the inputs is required')
|
197 |
-
|
198 |
-
# Render as image
|
199 |
-
image = self.render(current_emb)
|
200 |
-
|
201 |
-
return image
|
202 |
-
|
203 |
-
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
|
7 |
+
|
8 |
+
from model import pops_utils
|
9 |
+
from model.pipeline_pops import pOpsPipeline
|
10 |
+
|
11 |
+
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
|
12 |
+
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
|
13 |
+
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
|
14 |
+
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
|
15 |
+
prior_scene_repo: str = 'models/scene/learned_prior.pth'
|
16 |
+
prior_repo = "pOpsPaper/operators"
|
17 |
+
|
18 |
+
# gpu = torch.device('cuda')
|
19 |
+
# cpu = torch.device('cpu')
|
20 |
+
|
21 |
+
class PopsPipelines:
|
22 |
+
def __init__(self):
|
23 |
+
weight_dtype = torch.float16
|
24 |
+
self.weight_dtype = weight_dtype
|
25 |
+
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
self.device = 'cuda' #device
|
27 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
28 |
+
subfolder='image_encoder',
|
29 |
+
torch_dtype=weight_dtype).eval()
|
30 |
+
self.image_encoder.requires_grad_(False)
|
31 |
+
|
32 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
|
33 |
+
subfolder='image_processor')
|
34 |
+
|
35 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
|
36 |
+
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
37 |
+
subfolder='text_encoder',
|
38 |
+
torch_dtype=weight_dtype).eval().to(device)
|
39 |
+
|
40 |
+
# Load full model for vis
|
41 |
+
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
|
42 |
+
subfolder='unet').to(torch.float16).to(device)
|
43 |
+
|
44 |
+
|
45 |
+
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
|
46 |
+
torch_dtype=torch.float16)
|
47 |
+
self.decoder = self.decoder.to(device)
|
48 |
+
|
49 |
+
|
50 |
+
self.priors_dict = {
|
51 |
+
'texturing':{'repo':prior_texture_repo},
|
52 |
+
'instruct': {'repo': prior_instruct_repo},
|
53 |
+
'scene': {'repo':prior_scene_repo}
|
54 |
+
}
|
55 |
+
|
56 |
+
for prior_type in self.priors_dict:
|
57 |
+
prior_path = self.priors_dict[prior_type]['repo']
|
58 |
+
prior = PriorTransformer.from_pretrained(
|
59 |
+
kandinsky_prior_repo, subfolder="prior"
|
60 |
+
)
|
61 |
+
|
62 |
+
# Load from huggingface
|
63 |
+
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
|
64 |
+
prior_state_dict = torch.load(prior_path, map_location=device)
|
65 |
+
prior.load_state_dict(prior_state_dict, strict=False)
|
66 |
+
|
67 |
+
prior.eval()
|
68 |
+
prior = prior.to(weight_dtype)
|
69 |
+
|
70 |
+
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
|
71 |
+
prior=prior,
|
72 |
+
image_encoder=self.image_encoder,
|
73 |
+
torch_dtype=torch.float16)
|
74 |
+
|
75 |
+
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
|
76 |
+
|
77 |
+
def process_image(self, input_path):
|
78 |
+
if input_path is None:
|
79 |
+
return None
|
80 |
+
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
|
81 |
+
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
|
82 |
+
self.weight_dtype)
|
83 |
+
|
84 |
+
return image
|
85 |
+
|
86 |
+
def process_text(self, text):
|
87 |
+
self.text_encoder.to('cuda')
|
88 |
+
text_inputs = self.tokenizer(
|
89 |
+
text,
|
90 |
+
padding="max_length",
|
91 |
+
max_length=self.tokenizer.model_max_length,
|
92 |
+
truncation=True,
|
93 |
+
return_tensors="pt",
|
94 |
+
)
|
95 |
+
mask = text_inputs.attention_mask.bool() # [0]
|
96 |
+
|
97 |
+
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
|
98 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
99 |
+
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
|
100 |
+
self.text_encoder.to('cpu')
|
101 |
+
return text_encoder_concat
|
102 |
+
|
103 |
+
def run_binary(self, input_a, input_b, prior_type):
|
104 |
+
# Move pipeline to GPU
|
105 |
+
pipeline = self.priors_dict[prior_type]['pipeline']
|
106 |
+
pipeline.to('cuda')
|
107 |
+
self.image_encoder.to('cuda')
|
108 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
|
109 |
+
self.image_encoder,
|
110 |
+
pipeline.prior.clip_mean.detach(),
|
111 |
+
pipeline.prior.clip_std.detach())
|
112 |
+
|
113 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
114 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
115 |
+
|
116 |
+
guidance_scale = 1.0
|
117 |
+
if prior_type == 'texturing':
|
118 |
+
guidance_scale = 8.0
|
119 |
+
|
120 |
+
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
121 |
+
negative_input_embeds=negative_input_embeds,
|
122 |
+
negative_input_hidden_states=negative_hidden_states,
|
123 |
+
num_inference_steps=25,
|
124 |
+
num_images_per_prompt=1,
|
125 |
+
guidance_scale=guidance_scale)
|
126 |
+
|
127 |
+
# Optional
|
128 |
+
if prior_type == 'scene':
|
129 |
+
# Scene is the closet to what avg represents for a background image so incorporate that as well
|
130 |
+
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
|
131 |
+
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
|
132 |
+
alpha = 0.4
|
133 |
+
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
|
134 |
+
|
135 |
+
# Move pipeline to CPU
|
136 |
+
pipeline.to('cpu')
|
137 |
+
self.image_encoder.to('cpu')
|
138 |
+
return img_emb
|
139 |
+
|
140 |
+
def run_instruct(self, input_a, text):
|
141 |
+
|
142 |
+
text_encodings = self.process_text(text)
|
143 |
+
|
144 |
+
# Move pipeline to GPU
|
145 |
+
instruct_pipeline = self.priors_dict['instruct']['pipeline']
|
146 |
+
instruct_pipeline.to('cuda')
|
147 |
+
self.image_encoder.to('cuda')
|
148 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
|
149 |
+
self.image_encoder,
|
150 |
+
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
|
151 |
+
concat_hidden_states=text_encodings)
|
152 |
+
|
153 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
154 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
155 |
+
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
156 |
+
negative_input_embeds=negative_input_embeds,
|
157 |
+
negative_input_hidden_states=negative_hidden_states,
|
158 |
+
num_inference_steps=25,
|
159 |
+
num_images_per_prompt=1,
|
160 |
+
guidance_scale=1.0)
|
161 |
+
|
162 |
+
# Move pipeline to CPU
|
163 |
+
instruct_pipeline.to('cpu')
|
164 |
+
self.image_encoder.to('cpu')
|
165 |
+
return img_emb
|
166 |
+
|
167 |
+
def render(self, img_emb):
|
168 |
+
self.decoder.to('cuda')
|
169 |
+
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
|
170 |
+
num_inference_steps=50, height=512,
|
171 |
+
width=512, guidance_scale=4).images
|
172 |
+
self.decoder.to('cpu')
|
173 |
+
return images[0]
|
174 |
+
|
175 |
+
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
|
176 |
+
# Process both inputs
|
177 |
+
image_object = self.process_image(image_object_path)
|
178 |
+
image_texture = self.process_image(image_texture_path)
|
179 |
+
|
180 |
+
if image_object is None:
|
181 |
+
raise gr.Error('Object image is required')
|
182 |
+
|
183 |
+
current_emb = None
|
184 |
+
|
185 |
+
if image_texture is None:
|
186 |
+
instruct_input = image_object
|
187 |
+
else:
|
188 |
+
# Run texturing
|
189 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
|
190 |
+
instruct_input = current_emb.image_embeds
|
191 |
+
|
192 |
+
if text_instruct != '':
|
193 |
+
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
|
194 |
+
|
195 |
+
if current_emb is None:
|
196 |
+
raise gr.Error('At least one of the inputs is required')
|
197 |
+
|
198 |
+
# Render as image
|
199 |
+
image = self.render(current_emb)
|
200 |
+
|
201 |
+
return image
|
202 |
+
|
203 |
+
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
|
204 |
+
image_object = self.process_image(image_object_path)
|
205 |
+
image_texture = self.process_image(image_texture_path)
|
206 |
+
image_scene = self.process_image(image_scene_path)
|
207 |
+
|
208 |
+
if image_object is None:
|
209 |
+
raise gr.Error('Object image is required')
|
210 |
+
|
211 |
+
current_emb = None
|
212 |
+
|
213 |
+
# If both object and scene images are provided, run scene processing
|
214 |
+
if image_scene is not None:
|
215 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_scene, prior_type='scene')
|
216 |
+
scene_input = current_emb.image_embeds
|
217 |
+
else:
|
218 |
+
scene_input = image_object
|
219 |
+
|
220 |
+
# If a texture image is provided, apply texturing
|
221 |
+
if image_texture is not None:
|
222 |
+
current_emb = self.run_binary(input_a=scene_input, input_b=image_texture, prior_type='texturing')
|
223 |
+
|
224 |
+
if current_emb is None:
|
225 |
+
raise gr.Error('At least one of the images is required')
|
226 |
+
|
227 |
+
# Render the final image
|
228 |
+
image = self.render(current_emb)
|
229 |
+
|
230 |
+
return image
|
|