Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from css_html_js import custom_css | |
TITLE = """<h1 align="center" id="space-title">🇹🇭 Thai Sentence Embedding Leaderboard</h1>""" | |
INTRODUCTION_TEXT = """ | |
📐 The 🇹🇭 Thai Sentence Embedding Leaderboard aims to track, rank and evaluate open embedding models on Thai sentence embedding tasks. Source code for evaluation at https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark, feel free to submit your own score at https://huggingface.co/spaces/panuthept/thai_sentence_embedding_benchmark/discussions. | |
## Dataset | |
The evaluation is conducted on 4 tasks across 8 datasets: | |
1. Semantic Textual Similarity (STS) | |
- Translated STS-B, contains 1,379 test samples, https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark | |
2. Text Classification | |
- Wisesight, contains 2,671 test samples, https://huggingface.co/datasets/pythainlp/wisesight_sentiment | |
- Wongnai, contains 6,203 test samples, https://huggingface.co/datasets/Wongnai/wongnai_reviews | |
- Generated Review, contains 17,453 test samples, https://huggingface.co/datasets/airesearch/generated_reviews_enth | |
3. Pair Classification | |
- XNLI (Thai only), contains 3,340 test samples, https://github.com/facebookresearch/XNLI | |
4. Retrieval | |
- XQuAD (Thai only), contains 1,190 test samples, https://huggingface.co/datasets/google/xquad | |
- MIRACL (Thai only), contains 733 test samples, https://huggingface.co/datasets/miracl/miracl | |
- TyDiQA (Thai only), contains 763 test samples, https://huggingface.co/datasets/chompk/tydiqa-goldp-th | |
## Metrics | |
The evaluation metric for each task is as follows: | |
1. STS: Spearman’s Rank Correlation | |
2. Text Classification: F1 Score | |
3. Pair Classification: Average Precision | |
3. Retrieval: MMR@10 | |
""" | |
results = [ | |
{ | |
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)', | |
'Model Size (Million Parameters)': 279, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 37.95, | |
'STS (1 datasets)': 44.48, | |
'Classification (3 datasets)': 58.42, | |
'PairClassification (1 datasets)': 57.62, | |
'Retrieval (3 datasets)': 5.57, | |
}, | |
{ | |
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)', | |
'Model Size (Million Parameters)': 561, | |
'Embedding Dimensions': 1024, | |
'Average (8 datasets)': 38.59, | |
'STS (1 datasets)': 38.31, | |
'Classification (3 datasets)': 59.51, | |
'PairClassification (1 datasets)': 54.56, | |
'Retrieval (3 datasets)': 11.80, | |
}, | |
{ | |
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)', | |
'Model Size (Million Parameters)': 106, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 36.34, | |
'STS (1 datasets)': 21.32, | |
'Classification (3 datasets)': 55.46, | |
'PairClassification (1 datasets)': 52.96, | |
'Retrieval (3 datasets)': 19.49, | |
}, | |
{ | |
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 55.38, | |
'STS (1 datasets)': 51.56, | |
'Classification (3 datasets)': 59.90, | |
'PairClassification (1 datasets)': 59.67, | |
'Retrieval (3 datasets)': 56.31, | |
}, | |
{ | |
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 66.14, | |
'STS (1 datasets)': 80.49, | |
'Classification (3 datasets)': 56.89, | |
'PairClassification (1 datasets)': 84.14, | |
'Retrieval (3 datasets)': 64.13, | |
}, | |
{ | |
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)', | |
'Model Size (Million Parameters)': 135, | |
'Embedding Dimensions': 512, | |
'Average (8 datasets)': 51.45, | |
'STS (1 datasets)': 65.37, | |
'Classification (3 datasets)': 50.93, | |
'PairClassification (1 datasets)': 65.94, | |
'Retrieval (3 datasets)': 42.72, | |
}, | |
{ | |
'Model Name': '[BGE-M3 (dense only)](https://huggingface.co/BAAI/bge-m3)', | |
'Model Size (Million Parameters)': 570, | |
'Embedding Dimensions': 1024, | |
'Average (8 datasets)': 75.64, | |
'STS (1 datasets)': 77.22, | |
'Classification (3 datasets)': 59.95, | |
'PairClassification (1 datasets)': 79.02, | |
'Retrieval (3 datasets)': 91.42, | |
}, | |
{ | |
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)', | |
'Model Size (Million Parameters)': 279, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 53.83, | |
'STS (1 datasets)': 63.98, | |
'Classification (3 datasets)': 49.44, | |
'PairClassification (1 datasets)': 61.87, | |
'Retrieval (3 datasets)': 54.17, | |
}, | |
{ | |
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)', | |
'Model Size (Million Parameters)': 106, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 54.01, | |
'STS (1 datasets)': 60.73, | |
'Classification (3 datasets)': 56.71, | |
'PairClassification (1 datasets)': 59.14, | |
'Retrieval (3 datasets)': 51.05, | |
}, | |
{ | |
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 60.02, | |
'STS (1 datasets)': 67.82, | |
'Classification (3 datasets)': 53.50, | |
'PairClassification (1 datasets)': 63.35, | |
'Retrieval (3 datasets)': 66.05, | |
}, | |
{ | |
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)', | |
'Model Size (Million Parameters)': 279, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 57.69, | |
'STS (1 datasets)': 68.91, | |
'Classification (3 datasets)': 55.93, | |
'PairClassification (1 datasets)': 66.49, | |
'Retrieval (3 datasets)': 54.90, | |
}, | |
{ | |
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)', | |
'Model Size (Million Parameters)': 106, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 62.22, | |
'STS (1 datasets)': 71.35, | |
'Classification (3 datasets)': 59.19, | |
'PairClassification (1 datasets)': 67.04, | |
'Retrieval (3 datasets)': 63.83, | |
}, | |
{ | |
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 63.28, | |
'STS (1 datasets)': 74.08, | |
'Classification (3 datasets)': 58.77, | |
'PairClassification (1 datasets)': 65.87, | |
'Retrieval (3 datasets)': 66.20, | |
}, | |
{ | |
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)', | |
'Model Size (Million Parameters)': 279, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 65.37, | |
'STS (1 datasets)': 78.78, | |
'Classification (3 datasets)': 56.87, | |
'PairClassification (1 datasets)': 79.78, | |
'Retrieval (3 datasets)': 65.02, | |
}, | |
{ | |
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)', | |
'Model Size (Million Parameters)': 106, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 63.55, | |
'STS (1 datasets)': 77.77, | |
'Classification (3 datasets)': 56.33, | |
'PairClassification (1 datasets)': 77.04, | |
'Retrieval (3 datasets)': 62.38, | |
}, | |
{ | |
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 66.00, | |
'STS (1 datasets)': 77.80, | |
'Classification (3 datasets)': 57.27, | |
'PairClassification (1 datasets)': 77.84, | |
'Retrieval (3 datasets)': 67.94, | |
}, | |
{ | |
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)', | |
'Model Size (Million Parameters)': 279, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 66.84, | |
'STS (1 datasets)': 79.69, | |
'Classification (3 datasets)': 56.90, | |
'PairClassification (1 datasets)': 81.47, | |
'Retrieval (3 datasets)': 68.03, | |
}, | |
{ | |
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)', | |
'Model Size (Million Parameters)': 106, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 67.17, | |
'STS (1 datasets)': 78.78, | |
'Classification (3 datasets)': 58.16, | |
'PairClassification (1 datasets)': 82.43, | |
'Retrieval (3 datasets)': 67.66, | |
}, | |
{ | |
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)', | |
'Model Size (Million Parameters)': 278, | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 66.94, | |
'STS (1 datasets)': 78.90, | |
'Classification (3 datasets)': 57.63, | |
'PairClassification (1 datasets)': 81.01, | |
'Retrieval (3 datasets)': 68.04, | |
}, | |
{ | |
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)', | |
'Model Size (Million Parameters)': 7110, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 71.94, | |
'STS (1 datasets)': 75.52, | |
'Classification (3 datasets)': 60.46, | |
'PairClassification (1 datasets)': 68.04, | |
'Retrieval (3 datasets)': 86.80, | |
}, | |
{ | |
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)', | |
'Model Size (Million Parameters)': 7610, | |
'Embedding Dimensions': 3584, | |
'Average (8 datasets)': 49.31, | |
'STS (1 datasets)': 51.60, | |
'Classification (3 datasets)': 57.55, | |
'PairClassification (1 datasets)': 61.73, | |
'Retrieval (3 datasets)': 38.31, | |
}, | |
{ | |
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)', | |
'Model Size (Million Parameters)': 7240, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 42.38, | |
'STS (1 datasets)': 45.50, | |
'Classification (3 datasets)': 56.83, | |
'PairClassification (1 datasets)': 56.40, | |
'Retrieval (3 datasets)': 22.79, | |
}, | |
{ | |
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)', | |
'Model Size (Million Parameters)': 8030, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 51.63, | |
'STS (1 datasets)': 49.48, | |
'Classification (3 datasets)': 58.54, | |
'PairClassification (1 datasets)': 57.76, | |
'Retrieval (3 datasets)': 47.93, | |
}, | |
{ | |
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)', | |
'Model Size (Million Parameters)': 8030, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 52.81, | |
'STS (1 datasets)': 50.63, | |
'Classification (3 datasets)': 58.85, | |
'PairClassification (1 datasets)': 58.04, | |
'Retrieval (3 datasets)': 50.38, | |
}, | |
{ | |
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)', | |
'Model Size (Million Parameters)': 8030, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 50.36, | |
'STS (1 datasets)': 49.98, | |
'Classification (3 datasets)': 58.18, | |
'PairClassification (1 datasets)': 58.12, | |
'Retrieval (3 datasets)': 43.64, | |
}, | |
{ | |
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)', | |
'Model Size (Million Parameters)': 8030, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 50.06, | |
'STS (1 datasets)': 49.76, | |
'Classification (3 datasets)': 57.90, | |
'PairClassification (1 datasets)': 57.47, | |
'Retrieval (3 datasets)': 43.63, | |
}, | |
{ | |
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)', | |
'Model Size (Million Parameters)': 8030, | |
'Embedding Dimensions': 4096, | |
'Average (8 datasets)': 53.51, | |
'STS (1 datasets)': 51.46, | |
'Classification (3 datasets)': 58.91, | |
'PairClassification (1 datasets)': 58.05, | |
'Retrieval (3 datasets)': 52.65, | |
}, | |
{ | |
'Model Name': 'Cohere-embed-multilingual-v2.0', | |
'Model Size (Million Parameters)': "N/A", | |
'Embedding Dimensions': 768, | |
'Average (8 datasets)': 68.01, | |
'STS (1 datasets)': 68.03, | |
'Classification (3 datasets)': 57.31, | |
'PairClassification (1 datasets)': 62.03, | |
'Retrieval (3 datasets)': 85.23, | |
}, | |
{ | |
'Model Name': 'Cohere-embed-multilingual-v3.0', | |
'Model Size (Million Parameters)': "N/A", | |
'Embedding Dimensions': 1024, | |
'Average (8 datasets)': 74.86, | |
'STS (1 datasets)': 77.87, | |
'Classification (3 datasets)': 59.96, | |
'PairClassification (1 datasets)': 73.28, | |
'Retrieval (3 datasets)': 91.43, | |
}, | |
{ | |
'Model Name': 'Openai-text-embedding-3-large', | |
'Model Size (Million Parameters)': "N/A", | |
'Embedding Dimensions': 3072, | |
'Average (8 datasets)': 69.26, | |
'STS (1 datasets)': 70.46, | |
'Classification (3 datasets)': 58.79, | |
'PairClassification (1 datasets)': 67.33, | |
'Retrieval (3 datasets)': 83.87, | |
}, | |
] | |
# Calculate average | |
results = [ | |
{ | |
**result, | |
'Average (8 datasets)': round(sum( | |
result.get(key, 0) for key in ['STS (1 datasets)', 'Classification (3 datasets)', 'PairClassification (1 datasets)', 'Retrieval (3 datasets)'] | |
) / 4, 2), | |
} | |
for result in results | |
] | |
# Sort by average | |
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True) | |
data = pd.DataFrame(results) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
gr.DataFrame(data, datatype = 'markdown') | |
demo.launch() |