Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from threading import Thread | |
from queue import Queue | |
import time | |
import cv2 | |
import datetime | |
import torch | |
import spaces | |
import numpy as np | |
import json | |
import hashlib | |
import PIL | |
from typing import Iterator | |
from llava import conversation as conversation_lib | |
from llava.constants import DEFAULT_IMAGE_TOKEN | |
from llava.constants import ( | |
IMAGE_TOKEN_INDEX, | |
DEFAULT_IMAGE_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
) | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
from llava.mm_utils import ( | |
tokenizer_image_token, | |
get_model_name_from_path, | |
KeywordsStoppingCriteria, | |
) | |
import sys | |
from serve_constants import html_header | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from transformers import TextIteratorStreamer | |
import subprocess | |
external_log_dir = "./logs" | |
LOGDIR = external_log_dir | |
def install_gradio_4_35_0(): | |
current_version = gr.__version__ | |
if current_version != "4.35.0": | |
print(f"Current Gradio version: {current_version}") | |
print("Installing Gradio 4.35.0...") | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"]) | |
print("Gradio 4.35.0 installed successfully.") | |
else: | |
print("Gradio 4.35.0 is already installed.") | |
install_gradio_4_35_0() | |
print(f"Gradio version: {gr.__version__}") | |
def get_conv_log_filename(): | |
t = datetime.datetime.now() | |
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json") | |
return name | |
class InferenceDemo(object): | |
def __init__( | |
self, args, model_path, tokenizer, model, image_processor, context_len | |
) -> None: | |
disable_torch_init() | |
self.tokenizer = tokenizer | |
self.model = model | |
self.image_processor = image_processor | |
self.context_len = context_len | |
model_name = get_model_name_from_path(model_path) | |
if "llama-2" in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
elif "qwen" in model_name.lower(): | |
conv_mode = "qwen_1_5" | |
elif "pangea" in model_name.lower(): | |
conv_mode = "qwen_1_5" | |
else: | |
conv_mode = "llava_v0" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, args.conv_mode, args.conv_mode | |
) | |
) | |
else: | |
args.conv_mode = conv_mode | |
self.conv_mode = conv_mode | |
self.conversation = conv_templates[args.conv_mode].copy() | |
self.num_frames = args.num_frames | |
def process_stream(streamer: TextIteratorStreamer, history: list, q: Queue): | |
"""Process the output stream and put partial text into a queue""" | |
try: | |
current_message = "" | |
for new_text in streamer: | |
current_message += new_text | |
history[-1][1] = current_message | |
q.put(history.copy()) | |
time.sleep(0.02) # Add a small delay to prevent overloading | |
except Exception as e: | |
print(f"Error in process_stream: {e}") | |
finally: | |
q.put(None) # Signal that we're done | |
def stream_output(history: list, q: Queue) -> Iterator[list]: | |
"""Yield updated history as it comes through the queue""" | |
while True: | |
val = q.get() | |
if val is None: | |
break | |
yield val | |
q.task_done() | |
def is_valid_video_filename(name): | |
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"] | |
ext = name.split(".")[-1].lower() | |
return ext in video_extensions | |
def is_valid_image_filename(name): | |
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"] | |
ext = name.split(".")[-1].lower() | |
return ext in image_extensions | |
def sample_frames(video_file, num_frames): | |
video = cv2.VideoCapture(video_file) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
interval = total_frames // num_frames | |
frames = [] | |
for i in range(total_frames): | |
ret, frame = video.read() | |
if not ret: | |
continue | |
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if i % interval == 0: | |
frames.append(pil_img) | |
video.release() | |
return frames | |
def load_image(image_file): | |
if image_file.startswith(("http://", "https://")): | |
response = requests.get(image_file) | |
if response.status_code == 200: | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
print("Failed to load the image") | |
return None | |
else: | |
print("Load image from local file:", image_file) | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def clear_history(history): | |
global our_chatbot | |
our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy() | |
return None | |
def add_message(history, message): | |
global our_chatbot | |
if len(history) == 0: | |
our_chatbot = InferenceDemo( | |
args, model_path, tokenizer, model, image_processor, context_len | |
) | |
for x in message["files"]: | |
history.append(((x,), None)) | |
if message["text"] is not None: | |
history.append((message["text"], None)) | |
return history, gr.MultimodalTextbox(value=None, interactive=False) | |
def bot(history): | |
global start_tstamp, finish_tstamp | |
start_tstamp = time.time() | |
text = history[-1][0] | |
images_this_term = [] | |
num_new_images = 0 | |
for i, message in enumerate(history[:-1]): | |
if isinstance(message[0], tuple): | |
images_this_term.append(message[0][0]) | |
if is_valid_video_filename(message[0][0]): | |
raise ValueError("Video is not supported") | |
elif is_valid_image_filename(message[0][0]): | |
num_new_images += 1 | |
else: | |
raise ValueError("Invalid image file") | |
else: | |
num_new_images = 0 | |
assert len(images_this_term) > 0, "Must have an image" | |
image_list = [] | |
for f in images_this_term: | |
if is_valid_video_filename(f): | |
image_list += sample_frames(f, our_chatbot.num_frames) | |
elif is_valid_image_filename(f): | |
image_list.append(load_image(f)) | |
else: | |
raise ValueError("Invalid image file") | |
image_tensor = [ | |
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][0] | |
.half() | |
.to(our_chatbot.model.device) | |
for f in image_list | |
] | |
# Process image hashes | |
all_image_hash = [] | |
for image_path in images_this_term: | |
with open(image_path, "rb") as image_file: | |
image_data = image_file.read() | |
image_hash = hashlib.md5(image_data).hexdigest() | |
all_image_hash.append(image_hash) | |
image = PIL.Image.open(image_path).convert("RGB") | |
t = datetime.datetime.now() | |
filename = os.path.join( | |
LOGDIR, | |
"serve_images", | |
f"{t.year}-{t.month:02d}-{t.day:02d}", | |
f"{image_hash}.jpg", | |
) | |
if not os.path.isfile(filename): | |
os.makedirs(os.path.dirname(filename), exist_ok=True) | |
image.save(filename) | |
image_tensor = torch.stack(image_tensor) | |
image_token = DEFAULT_IMAGE_TOKEN * num_new_images | |
inp = image_token + "\n" + text | |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp) | |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None) | |
prompt = our_chatbot.conversation.get_prompt() | |
input_ids = ( | |
tokenizer_image_token( | |
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt" | |
) | |
.unsqueeze(0) | |
.to(our_chatbot.model.device) | |
) | |
stop_str = ( | |
our_chatbot.conversation.sep | |
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO | |
else our_chatbot.conversation.sep2 | |
) | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria( | |
keywords, our_chatbot.tokenizer, input_ids | |
) | |
# Set up streaming | |
q = Queue() | |
streamer = TextIteratorStreamer( | |
our_chatbot.tokenizer, | |
skip_prompt=True, | |
skip_special_tokens=True | |
) | |
# Start generation in a separate thread | |
thread = Thread( | |
target=process_stream, | |
args=(streamer, history, q) | |
) | |
thread.start() | |
# Start the generation | |
with torch.inference_mode(): | |
output_ids = our_chatbot.model.generate( | |
input_ids, | |
images=image_tensor, | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=1024, | |
streamer=streamer, | |
use_cache=True, | |
stopping_criteria=[stopping_criteria], | |
) | |
finish_tstamp = time.time() | |
# Log conversation | |
with open(get_conv_log_filename(), "a") as fout: | |
data = { | |
"tstamp": round(finish_tstamp, 4), | |
"type": "chat", | |
"model": "Pangea-7b", | |
"start": round(start_tstamp, 4), | |
"finish": round(finish_tstamp, 4), | |
"state": history, | |
"images": all_image_hash, | |
} | |
fout.write(json.dumps(data) + "\n") | |
# Return a generator that will yield updated history | |
return stream_output(history, q) | |
with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}") as demo: | |
gr.HTML(html_header) | |
with gr.Column(): | |
with gr.Row(): | |
chatbot = gr.Chatbot([], elem_id="Pangea", bubble_full_width=False, height=750) | |
with gr.Row(): | |
upvote_btn = gr.Button(value="👍 Upvote", interactive=True) | |
downvote_btn = gr.Button(value="👎 Downvote", interactive=True) | |
flag_btn = gr.Button(value="⚠️ Flag", interactive=True) | |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True) | |
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True) | |
chat_input = gr.MultimodalTextbox( | |
interactive=True, | |
file_types=["image"], | |
placeholder="Enter message or upload file...", | |
show_label=False, | |
submit_btn="🚀" | |
) | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
gr.Examples( | |
examples_per_page=20, | |
examples=[ | |
[ | |
{ | |
"files": [ | |
f"{cur_dir}/examples/user_example_07.jpg", | |
], | |
"text": "那要我问问你,你这个是什么🐱?", | |
}, | |
], | |
[ | |
{ | |
"files": [ | |
f"{cur_dir}/examples/user_example_05.jpg", | |
], | |
"text": "この猫の目の大きさは、どのような理由で他の猫と比べて特に大きく見えますか?", | |
}, | |
], | |
[ | |
{ | |
"files": [ | |
f"{cur_dir}/examples/172197131626056_P7966202.png", | |
], | |
"text": "Why this image funny?", | |
}, | |
], | |
], | |
inputs=[chat_input], | |
label="Image", | |
) | |
chat_msg = chat_input.submit( | |
add_message, | |
[chatbot, chat_input], | |
[chatbot, chat_input], | |
queue=False | |
).then( | |
bot, | |
chatbot, | |
chatbot, | |
api_name="bot_response" | |
).then( | |
lambda: gr.MultimodalTextbox(interactive=True), | |
None, | |
[chat_input] | |
) | |
clear_btn.click( | |
fn=clear_history, | |
inputs=[chatbot], | |
outputs=[chatbot], | |
api_name="clear_all", | |
queue=False | |
) | |
regenerate_btn.click( | |
fn=lambda history: history[:-1], | |
inputs=[chatbot], | |
outputs=[chatbot], | |
queue=False | |
).then( | |
bot, | |
chatbot, | |
chatbot | |
) | |
demo.queue(concurrency_count=5) | |
if __name__ == "__main__": | |
import argparse | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument("--server_name", default="0.0.0.0", type=str) | |
argparser.add_argument("--port", default="6123", type=str) | |
argparser.add_argument( | |
"--model_path", default="neulab/Pangea-7B", type=str | |
) | |
# argparser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
argparser.add_argument("--model-base", type=str, default=None) | |
argparser.add_argument("--num-gpus", type=int, default=1) | |
argparser.add_argument("--conv-mode", type=str, default=None) | |
argparser.add_argument("--temperature", type=float, default=0.7) | |
argparser.add_argument("--max-new-tokens", type=int, default=4096) | |
argparser.add_argument("--num_frames", type=int, default=16) | |
argparser.add_argument("--load-8bit", action="store_true") | |
argparser.add_argument("--load-4bit", action="store_true") | |
argparser.add_argument("--debug", action="store_true") | |
args = argparser.parse_args() | |
model_path = args.model_path | |
filt_invalid = "cut" | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit) | |
model=model.to(torch.device('cuda')) | |
our_chatbot = None | |
demo.launch() |