Spaces:
Running
Running
File size: 23,149 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import glob
import os
import numpy as np
import cv2 as cv
from sympy import li
import torch
from torch.utils.data import Dataset
import AnimatableGaussians.smplx as smplx
import AnimatableGaussians.config as config
import AnimatableGaussians.utils.nerf_util as nerf_util
import AnimatableGaussians.utils.visualize_util as visualize_util
import AnimatableGaussians.dataset.commons as commons
class MvRgbDatasetBase(Dataset):
@torch.no_grad()
def __init__(
self,
data_dir,
frame_range = None,
used_cam_ids = None,
training = True,
subject_name = None,
load_smpl_pos_map = False,
load_smpl_nml_map = False,
mode = '3dgs'
):
super(MvRgbDatasetBase, self).__init__()
self.data_dir = data_dir
self.training = training
self.subject_name = subject_name
if self.subject_name is None:
self.subject_name = os.path.basename(self.data_dir)
self.load_smpl_pos_map = load_smpl_pos_map
self.load_smpl_nml_map = load_smpl_nml_map
self.mode = mode # '3dgs' or 'nerf'
self.load_cam_data()
self.load_smpl_data()
self.smpl_model = smplx.SMPLX(model_path = config.PROJ_DIR + '/smpl_files/smplx', gender = 'neutral', use_pca = False, num_pca_comps = 45, flat_hand_mean = True, batch_size = 1)
pose_list = list(range(self.smpl_data['body_pose'].shape[0]))
if frame_range is not None:
# print('# Selected frame range: ', frame_range)
# print(isinstance(frame_range, list))
# print(type(frame_range))
# to list
frame_range = list(frame_range)
if isinstance(frame_range, list):
if len(frame_range) == 2:
print(f'# Selected frame indices: range({frame_range[0]}, {frame_range[1]})')
frame_range = range(frame_range[0], frame_range[1])
elif len(frame_range) == 3:
print(f'# Selected frame indices: range({frame_range[0]}, {frame_range[1]}, {frame_range[2]})')
frame_range = range(frame_range[0], frame_range[1], frame_range[2])
elif isinstance(frame_range, str):
frame_range = np.loadtxt(self.data_dir + '/' + frame_range).astype(np.int).tolist()
print(f'# Selected frame indices: {frame_range}')
else:
raise TypeError('Invalid frame_range!')
self.pose_list = list(frame_range)
else:
self.pose_list = pose_list
if self.training:
if used_cam_ids is None:
self.used_cam_ids = list(range(self.view_num))
else:
self.used_cam_ids = used_cam_ids
print('# Used camera ids: ', self.used_cam_ids)
self.data_list = []
for pose_idx in self.pose_list:
for view_idx in self.used_cam_ids:
self.data_list.append((pose_idx, view_idx))
# filter missing files
self.filter_missing_files()
print('# Dataset contains %d items' % len(self))
# SMPL related
ret = self.smpl_model.forward(betas = self.smpl_data['betas'][0][None],
global_orient = config.cano_smpl_global_orient[None],
transl = config.cano_smpl_transl[None],
body_pose = config.cano_smpl_body_pose[None])
self.cano_smpl = {k: v[0] for k, v in ret.items() if isinstance(v, torch.Tensor)}
self.inv_cano_jnt_mats = torch.linalg.inv(self.cano_smpl['A'])
min_xyz = self.cano_smpl['vertices'].min(0)[0]
max_xyz = self.cano_smpl['vertices'].max(0)[0]
self.cano_smpl_center = 0.5 * (min_xyz + max_xyz)
min_xyz[:2] -= 0.05
max_xyz[:2] += 0.05
min_xyz[2] -= 0.15
max_xyz[2] += 0.15
self.cano_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).numpy()
self.smpl_faces = self.smpl_model.faces.astype(np.int32)
commons._initialize_hands(self)
def __len__(self):
if self.training:
return len(self.data_list)
else:
return len(self.pose_list)
def __getitem__(self, index):
return self.getitem(index, self.training)
def getitem(self, index, training = True, **kwargs):
if training or kwargs.get('eval', False): # training or evaluation
pose_idx, view_idx = self.data_list[index]
pose_idx = kwargs['pose_idx'] if 'pose_idx' in kwargs else pose_idx
view_idx = kwargs['view_idx'] if 'view_idx' in kwargs else view_idx
data_idx = (pose_idx, view_idx)
if not training:
print('data index: (%d, %d)' % (pose_idx, view_idx))
else: # testing
pose_idx = self.pose_list[index]
data_idx = pose_idx
print('data index: %d' % pose_idx)
# SMPL
with torch.no_grad():
live_smpl = self.smpl_model.forward(
betas = self.smpl_data['betas'][0][None],
global_orient = self.smpl_data['global_orient'][pose_idx][None],
transl = self.smpl_data['transl'][pose_idx][None],
body_pose = self.smpl_data['body_pose'][pose_idx][None],
jaw_pose = self.smpl_data['jaw_pose'][pose_idx][None],
expression = self.smpl_data['expression'][pose_idx][None],
left_hand_pose = self.smpl_data['left_hand_pose'][pose_idx][None],
right_hand_pose = self.smpl_data['right_hand_pose'][pose_idx][None]
)
cano_smpl = self.smpl_model.forward(
betas = self.smpl_data['betas'][0][None],
global_orient = config.cano_smpl_global_orient[None],
transl = config.cano_smpl_transl[None],
body_pose = config.cano_smpl_body_pose[None],
jaw_pose = self.smpl_data['jaw_pose'][pose_idx][None],
expression = self.smpl_data['expression'][pose_idx][None],
)
live_smpl_woRoot = self.smpl_model.forward(
betas = self.smpl_data['betas'][0][None],
body_pose = self.smpl_data['body_pose'][pose_idx][None],
jaw_pose = self.smpl_data['jaw_pose'][pose_idx][None],
expression = self.smpl_data['expression'][pose_idx][None],
)
data_item = dict()
if self.load_smpl_pos_map:
smpl_pos_map = cv.imread(self.data_dir + '/smpl_pos_map/%08d.exr' % pose_idx, cv.IMREAD_UNCHANGED)
pos_map_size = smpl_pos_map.shape[1] // 2
smpl_pos_map = np.concatenate([smpl_pos_map[:, :pos_map_size], smpl_pos_map[:, pos_map_size:]], 2)
smpl_pos_map = smpl_pos_map.transpose((2, 0, 1))
data_item['smpl_pos_map'] = smpl_pos_map
if self.load_smpl_nml_map:
smpl_nml_map = cv.imread(self.data_dir + '/smpl_nml_map/%08d.jpg' % pose_idx, cv.IMREAD_UNCHANGED)
smpl_nml_map = (smpl_nml_map / 255.).astype(np.float32)
nml_map_size = smpl_nml_map.shape[1] // 2
smpl_nml_map = np.concatenate([smpl_nml_map[:, :nml_map_size], smpl_nml_map[:, nml_map_size:]], 2)
smpl_nml_map = smpl_nml_map.transpose((2, 0, 1))
data_item['smpl_nml_map'] = smpl_nml_map
data_item['joints'] = live_smpl.joints[0, :22]
data_item['kin_parent'] = self.smpl_model.parents[:22].to(torch.long)
data_item['item_idx'] = index
data_item['data_idx'] = data_idx
data_item['time_stamp'] = np.array(pose_idx, np.float32)
data_item['global_orient'] = self.smpl_data['global_orient'][pose_idx]
data_item['transl'] = self.smpl_data['transl'][pose_idx]
data_item['live_smpl_v'] = live_smpl.vertices[0]
data_item['live_smpl_v_woRoot'] = live_smpl_woRoot.vertices[0]
data_item['cano_smpl_v'] = cano_smpl.vertices[0]
data_item['cano_jnts'] = cano_smpl.joints[0]
data_item['cano2live_jnt_mats'] = torch.matmul(live_smpl.A[0], torch.linalg.inv(cano_smpl.A[0]))
data_item['cano2live_jnt_mats_woRoot'] = torch.matmul(live_smpl_woRoot.A[0], torch.linalg.inv(cano_smpl.A[0]))
data_item['cano_smpl_center'] = self.cano_smpl_center
data_item['cano_bounds'] = self.cano_bounds
data_item['smpl_faces'] = self.smpl_faces
min_xyz = live_smpl.vertices[0].min(0)[0] - 0.15
max_xyz = live_smpl.vertices[0].max(0)[0] + 0.15
live_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).numpy()
data_item['live_bounds'] = live_bounds
if training:
color_img, mask_img = self.load_color_mask_images(pose_idx, view_idx)
color_img = (color_img / 255.).astype(np.float32)
boundary_mask_img, mask_img = self.get_boundary_mask(mask_img)
if self.mode == '3dgs':
data_item.update({
'img_h': color_img.shape[0],
'img_w': color_img.shape[1],
'extr': self.extr_mats[view_idx],
'intr': self.intr_mats[view_idx],
'color_img': color_img,
'mask_img': mask_img,
'boundary_mask_img': boundary_mask_img
})
elif self.mode == 'nerf':
depth_img = np.zeros(color_img.shape[:2], np.float32)
nerf_random = nerf_util.sample_randomly_for_nerf_rendering(
color_img, mask_img, depth_img,
self.extr_mats[view_idx], self.intr_mats[view_idx],
live_bounds,
unsample_region_mask = boundary_mask_img
)
data_item.update({
'nerf_random': nerf_random,
'extr': self.extr_mats[view_idx],
'intr': self.intr_mats[view_idx]
})
else:
raise ValueError('Invalid dataset mode!')
else:
""" synthesis config """
img_h = 512 if 'img_h' not in kwargs else kwargs['img_h']
img_w = 512 if 'img_w' not in kwargs else kwargs['img_w']
intr = np.array([[550, 0, 256], [0, 550, 256], [0, 0, 1]], np.float32) if 'intr' not in kwargs else kwargs['intr']
if 'extr' not in kwargs:
extr = visualize_util.calc_front_mv(live_bounds.mean(0), tar_pos = np.array([0, 0, 2.5]))
else:
extr = kwargs['extr']
data_item.update({
'img_h': img_h,
'img_w': img_w,
'extr': extr,
'intr': intr
})
if self.mode == 'nerf' or self.mode == '3dgs' and not training:
# mano
data_item['left_cano_mano_v'], data_item['left_cano_mano_n'], data_item['right_cano_mano_v'], data_item['right_cano_mano_n'] \
= commons.generate_two_manos(self, self.cano_smpl['vertices'])
data_item['left_live_mano_v'], data_item['left_live_mano_n'], data_item['right_live_mano_v'], data_item['right_live_mano_n'] \
= commons.generate_two_manos(self, live_smpl.vertices[0])
return data_item
def load_cam_data(self):
"""
Initialize:
self.cam_names, self.view_num, self.extr_mats, self.intr_mats,
self.img_widths, self.img_heights
"""
raise NotImplementedError
def load_smpl_data(self):
"""
Initialize:
self.cam_data, a dict including ['body_pose', 'global_orient', 'transl', 'betas', ...]
"""
smpl_data = np.load(self.data_dir + '/smpl_params.npz', allow_pickle = True)
smpl_data = dict(smpl_data)
self.smpl_data = {k: torch.from_numpy(v.astype(np.float32)) for k, v in smpl_data.items()}
def filter_missing_files(self):
pass
def load_color_mask_images(self, pose_idx, view_idx):
raise NotImplementedError
@staticmethod
def get_boundary_mask(mask, kernel_size = 5):
"""
:param mask: np.uint8
:param kernel_size:
:return:
"""
mask_bk = mask.copy()
thres = 128
mask[mask < thres] = 0
mask[mask > thres] = 1
kernel = np.ones((kernel_size, kernel_size), np.uint8)
mask_erode = cv.erode(mask.copy(), kernel)
mask_dilate = cv.dilate(mask.copy(), kernel)
boundary_mask = (mask_dilate - mask_erode) == 1
boundary_mask = np.logical_or(boundary_mask,
np.logical_and(mask_bk > 5, mask_bk < 250))
# boundary_mask_resized = cv.resize(boundary_mask.astype(np.uint8), (0, 0), fx = 0.5, fy = 0.5)
# cv.imshow('boundary_mask', boundary_mask_resized.astype(np.uint8) * 255)
# cv.waitKey(0)
return boundary_mask, mask == 1
def compute_pca(self, n_components = 10):
from sklearn.decomposition import PCA
from tqdm import tqdm
import joblib
if not os.path.exists(self.data_dir + '/smpl_pos_map/pca_%d.ckpt' % n_components):
pose_conds = []
mask = None
for pose_idx in tqdm(self.pose_list, desc = 'Loading position maps...'):
pose_map = cv.imread(self.data_dir + '/smpl_pos_map/%08d.exr' % pose_idx, cv.IMREAD_UNCHANGED)
pose_map = pose_map[:, :pose_map.shape[1] // 2]
if mask is None:
mask = np.linalg.norm(pose_map, axis = -1) > 1e-6
pose_conds.append(pose_map[mask])
pose_conds = np.stack(pose_conds, 0)
pose_conds = pose_conds.reshape(pose_conds.shape[0], -1)
self.pca = PCA(n_components = n_components)
self.pca.fit(pose_conds)
joblib.dump(self.pca, self.data_dir + '/smpl_pos_map/pca_%d.ckpt' % n_components)
self.pos_map_mask = mask
else:
self.pca = joblib.load(self.data_dir + '/smpl_pos_map/pca_%d.ckpt' % n_components)
pose_map = cv.imread(sorted(glob.glob(self.data_dir + '/smpl_pos_map/0*.exr'))[0], cv.IMREAD_UNCHANGED)
pose_map = pose_map[:, :pose_map.shape[1] // 2]
self.pos_map_mask = np.linalg.norm(pose_map, axis = -1) > 1e-6
def transform_pca(self, pose_conds, sigma_pca = 2.):
pose_conds = pose_conds.reshape(1, -1)
lowdim_pose_conds = self.pca.transform(pose_conds)
std = np.sqrt(self.pca.explained_variance_)
lowdim_pose_conds = np.maximum(lowdim_pose_conds, -sigma_pca * std)
lowdim_pose_conds = np.minimum(lowdim_pose_conds, sigma_pca * std)
new_pose_conds = self.pca.inverse_transform(lowdim_pose_conds)
new_pose_conds = new_pose_conds.reshape(-1, 3)
return new_pose_conds
class MvRgbDatasetTHuman4(MvRgbDatasetBase):
def __init__(
self,
data_dir,
frame_range = None,
used_cam_ids = None,
training = True,
subject_name = None,
load_smpl_pos_map = False,
load_smpl_nml_map = False,
mode = '3dgs'
):
super(MvRgbDatasetTHuman4, self).__init__(
data_dir,
frame_range,
used_cam_ids,
training,
subject_name,
load_smpl_pos_map,
load_smpl_nml_map,
mode
)
def load_cam_data(self):
import json
cam_data = json.load(open(self.data_dir + '/calibration.json', 'r'))
self.view_num = len(cam_data)
self.extr_mats = []
self.cam_names = ['cam%02d' % view_idx for view_idx in range(self.view_num)]
for view_idx in range(self.view_num):
extr_mat = np.identity(4, np.float32)
extr_mat[:3, :3] = np.array(cam_data['cam%02d' % view_idx]['R'], np.float32).reshape(3, 3)
extr_mat[:3, 3] = np.array(cam_data['cam%02d' % view_idx]['T'], np.float32)
self.extr_mats.append(extr_mat)
self.intr_mats = [np.array(cam_data['cam%02d' % view_idx]['K'], np.float32).reshape(3, 3) for view_idx in range(self.view_num)]
self.img_heights = [cam_data['cam%02d' % view_idx]['imgSize'][1] for view_idx in range(self.view_num)]
self.img_widths = [cam_data['cam%02d' % view_idx]['imgSize'][0] for view_idx in range(self.view_num)]
def filter_missing_files(self):
missing_data_list = []
with open(self.data_dir + '/missing_img_files.txt', 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.replace('\\', '/') # considering both Windows and Ubuntu file system
frame_idx = int(os.path.basename(line).replace('.jpg', ''))
view_idx = int(os.path.basename(os.path.dirname(line)).replace('cam', ''))
missing_data_list.append((frame_idx, view_idx))
for missing_data_idx in missing_data_list:
if missing_data_idx in self.data_list:
self.data_list.remove(missing_data_idx)
def load_color_mask_images(self, pose_idx, view_idx):
color_img = cv.imread(self.data_dir + '/images/cam%02d/%08d.jpg' % (view_idx, pose_idx), cv.IMREAD_UNCHANGED)
mask_img = cv.imread(self.data_dir + '/masks/cam%02d/%08d.jpg' % (view_idx, pose_idx), cv.IMREAD_UNCHANGED)
return color_img, mask_img
class MvRgbDatasetAvatarReX(MvRgbDatasetBase):
def __init__(
self,
data_dir,
frame_range = None,
used_cam_ids = None,
training = True,
subject_name = None,
load_smpl_pos_map = False,
load_smpl_nml_map = False,
mode = '3dgs'
):
super(MvRgbDatasetAvatarReX, self).__init__(
data_dir,
frame_range,
used_cam_ids,
training,
subject_name,
load_smpl_pos_map,
load_smpl_nml_map,
mode
)
def load_cam_data(self):
import json
cam_data = json.load(open(self.data_dir + '/calibration_full.json', 'r'))
self.cam_names = list(cam_data.keys())
self.view_num = len(self.cam_names)
self.extr_mats = []
for view_idx in range(self.view_num):
extr_mat = np.identity(4, np.float32)
extr_mat[:3, :3] = np.array(cam_data[self.cam_names[view_idx]]['R'], np.float32).reshape(3, 3)
extr_mat[:3, 3] = np.array(cam_data[self.cam_names[view_idx]]['T'], np.float32)
self.extr_mats.append(extr_mat)
self.intr_mats = [np.array(cam_data[self.cam_names[view_idx]]['K'], np.float32).reshape(3, 3) for view_idx in range(self.view_num)]
self.img_heights = [cam_data[self.cam_names[view_idx]]['imgSize'][1] for view_idx in range(self.view_num)]
self.img_widths = [cam_data[self.cam_names[view_idx]]['imgSize'][0] for view_idx in range(self.view_num)]
def filter_missing_files(self):
if os.path.exists(self.data_dir + '/missing_img_files.txt'):
missing_data_list = []
with open(self.data_dir + '/missing_img_files.txt', 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.replace('\\', '/') # considering both Windows and Ubuntu file system
frame_idx = int(os.path.basename(line).replace('.jpg', ''))
view_idx = self.cam_names.index(os.path.basename(os.path.dirname(line)))
missing_data_list.append((frame_idx, view_idx))
for missing_data_idx in missing_data_list:
if missing_data_idx in self.data_list:
self.data_list.remove(missing_data_idx)
def load_color_mask_images(self, pose_idx, view_idx):
cam_name = self.cam_names[view_idx]
color_img = cv.imread(self.data_dir + '/%s/%08d.jpg' % (cam_name, pose_idx), cv.IMREAD_UNCHANGED)
mask_img = cv.imread(self.data_dir + '/%s/mask/pha/%08d.jpg' % (cam_name, pose_idx), cv.IMREAD_UNCHANGED)
return color_img, mask_img
class MvRgbDatasetActorsHQ(MvRgbDatasetBase):
def __init__(
self,
data_dir,
frame_range = None,
used_cam_ids = None,
training = True,
subject_name = None,
load_smpl_pos_map = False,
load_smpl_nml_map = False,
mode = '3dgs'
):
super(MvRgbDatasetActorsHQ, self).__init__(
data_dir,
frame_range,
used_cam_ids,
training,
subject_name,
load_smpl_pos_map,
load_smpl_nml_map,
mode
)
if subject_name is None:
self.subject_name = os.path.basename(os.path.dirname(self.data_dir))
def load_cam_data(self):
import csv
cam_names = []
extr_mats = []
intr_mats = []
img_widths = []
img_heights = []
with open(self.data_dir + '/4x/calibration.csv', "r", newline = "", encoding = 'utf-8') as fp:
reader = csv.DictReader(fp)
for row in reader:
cam_names.append(row['name'])
img_widths.append(int(row['w']))
img_heights.append(int(row['h']))
extr_mat = np.identity(4, np.float32)
extr_mat[:3, :3] = cv.Rodrigues(np.array([float(row['rx']), float(row['ry']), float(row['rz'])], np.float32))[0]
extr_mat[:3, 3] = np.array([float(row['tx']), float(row['ty']), float(row['tz'])])
extr_mat = np.linalg.inv(extr_mat)
extr_mats.append(extr_mat)
intr_mat = np.identity(3, np.float32)
intr_mat[0, 0] = float(row['fx']) * float(row['w'])
intr_mat[0, 2] = float(row['px']) * float(row['w'])
intr_mat[1, 1] = float(row['fy']) * float(row['h'])
intr_mat[1, 2] = float(row['py']) * float(row['h'])
intr_mats.append(intr_mat)
self.cam_names, self.img_widths, self.img_heights, self.extr_mats, self.intr_mats \
= cam_names, img_widths, img_heights, extr_mats, intr_mats
def load_color_mask_images(self, pose_idx, view_idx):
cam_name = self.cam_names[view_idx]
color_img = cv.imread(self.data_dir + '/4x/rgbs/%s/%s_rgb%06d.jpg' % (cam_name, cam_name, pose_idx), cv.IMREAD_UNCHANGED)
mask_img = cv.imread(self.data_dir + '/4x/masks/%s/%s_mask%06d.png' % (cam_name, cam_name, pose_idx), cv.IMREAD_UNCHANGED)
return color_img, mask_img
|