Spaces:
Running
Running
File size: 35,725 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import glob
import os
import pickle
import numpy as np
import cv2 as cv
import torch
import trimesh
from torch.utils.data import Dataset
import yaml
import json
import AnimatableGaussians.smplx as smplx
import AnimatableGaussians.dataset.commons as commons
import AnimatableGaussians.utils.nerf_util as nerf_util
import AnimatableGaussians.utils.visualize_util as visualize_util
import AnimatableGaussians.config as config
class PoseDataset(Dataset):
@torch.no_grad()
def __init__(
self,
data_path,
frame_range = None,
frame_interval = 1,
smpl_shape = None,
gender = 'neutral',
frame_win = 0,
fix_head_pose = True,
fix_hand_pose = True,
denoise = False,
hand_pose_type = 'ori',
constrain_leg_pose = False,
device = 'cuda:0'
):
super(PoseDataset, self).__init__()
self.data_path = data_path
self.training = False
self.gender = gender
data_name, ext = os.path.splitext(os.path.basename(data_path))
print(data_name)
if ext == '.pkl':
smpl_data = pickle.load(open(data_path, 'rb'))
smpl_data = dict(smpl_data)
self.body_poses = torch.from_numpy(smpl_data['smpl_poses']).to(torch.float32)
self.transl = torch.from_numpy(smpl_data['smpl_trans']).to(torch.float32) * 1e-3
self.dataset_name = 'aist++'
self.seq_name = data_name
elif ext == '.npz':
potential_datasets = ['thuman4', 'actorshq', 'avatarrex', 'AMASS']
for i, potential_dataset in enumerate(potential_datasets):
start_pos = data_path.find(potential_dataset)
if start_pos == -1:
if i < len(potential_datasets) - 1:
continue
else:
raise ValueError('Invalid data_path!')
self.dataset_name = potential_dataset
self.seq_name = data_path[start_pos:].replace(self.dataset_name, '').replace('/', '_').replace('\\', '_').replace('.npz', '')
break
# print(self.dataset_name)
# print(f'# Dataset name: {self.dataset_name}, sequence name: {self.seq_name}')
if self.dataset_name == 'thuman4' or self.dataset_name == 'actorshq' or self.dataset_name == 'avatarrex':
smpl_data = np.load(data_path)
# if smpl_data.shape[1] == 156:
# # build dict
# smpl_data = {
# 'betas': smpl_data[:, :10],
# 'global_orient': smpl_data[:, 10:13],
# 'transl': smpl_data[:, 13:16],
# 'body_pose': smpl_data[:, 16:88],
# 'left_hand_pose': smpl_data[:, 88:133],
# 'right_hand_pose': smpl_data[:, 133:]
# }
smpl_data = dict(smpl_data)
for k in smpl_data.keys():
print(k, smpl_data[k].shape)
else: # AMASS dataset
pose_file = np.load(data_path)
smpl_data = {
'betas': np.zeros((1, 10), np.float32),
'global_orient': pose_file['poses'][:, :3],
'transl': pose_file['trans'],
'body_pose': pose_file['poses'][:, 3: 22 * 3],
'left_hand_pose': pose_file['poses'][:, 22 * 3: 37 * 3],
'right_hand_pose': pose_file['poses'][:, 37 * 3:]
}
# smpl_data['body_pose'][:, 13 * 3 + 2] -= 0.3
# smpl_data['body_pose'][:, 12 * 3 + 2] += 0.3
# # smpl_data['body_pose'][:, 16 * 3 + 2] -= 0.1
# # smpl_data['body_pose'][:, 15 * 3 + 2] += 0.1
# smpl_data['body_pose'][:, 19 * 3: 20 * 3] = 0.
# smpl_data['body_pose'][:, 20 * 3: 21 * 3] = 0.
# smpl_data['body_pose'][:, 14 * 3] = 0.
# print(smpl_data['body_pose'].shape)
if self.seq_name == '_actor01':
smpl_data['body_pose'][:, 6*3: 7*3] = 0.
smpl_data['body_pose'][:, 7*3: 8*3] = 0.
smpl_data = {k: torch.from_numpy(v).to(torch.float32) for k, v in smpl_data.items()}
frame_num = smpl_data['body_pose'].shape[0]
self.body_poses = torch.zeros((frame_num, 72), dtype = torch.float32)
self.body_poses[:, :3] = smpl_data['global_orient']
self.body_poses[:, 3:3+21*3] = smpl_data['body_pose']
self.transl = smpl_data['transl']
# print(self.body_poses)
data_dir = os.path.dirname(data_path)
calib_path = os.path.basename(data_path).replace('.npz', '.json').replace('pose', 'calibration')
calib_path = data_dir + '/' + calib_path
if os.path.exists(calib_path):
cam_data = json.load(open(calib_path, 'r'))
self.view_num = len(cam_data)
self.extr_mats = []
self.cam_names = list(cam_data.keys())
for view_idx in range(self.view_num):
extr_mat = np.identity(4, np.float32)
extr_mat[:3, :3] = np.array(cam_data[self.cam_names[view_idx]]['R'], np.float32).reshape(3, 3)
extr_mat[:3, 3] = np.array(cam_data[self.cam_names[view_idx]]['T'], np.float32)
self.extr_mats.append(extr_mat)
self.intr_mats = [np.array(cam_data[self.cam_names[view_idx]]['K'], np.float32).reshape(3, 3) for view_idx in range(self.view_num)]
self.img_heights = [cam_data[self.cam_names[view_idx]]['imgSize'][1] for view_idx in range(self.view_num)]
self.img_widths = [cam_data[self.cam_names[view_idx]]['imgSize'][0] for view_idx in range(self.view_num)]
else:
raise AssertionError('Invalid data_path!')
if 'left_hand_pose' in smpl_data:
self.left_hand_pose = smpl_data['left_hand_pose']
else:
self.left_hand_pose = config.left_hand_pose[None].expand(self.body_poses.shape[0], -1)
if 'right_hand_pose' in smpl_data:
self.right_hand_pose = smpl_data['right_hand_pose']
else:
self.right_hand_pose = config.right_hand_pose[None].expand(self.body_poses.shape[0], -1)
self.body_poses = self.body_poses.to(device)
self.transl = self.transl.to(device)
self.fix_head_pose = fix_head_pose
self.fix_hand_pose = fix_hand_pose
self.smpl_model = smplx.SMPLX(model_path = config.PROJ_DIR + '/smpl_files/smplx', gender = self.gender, use_pca = False, num_pca_comps = 45, flat_hand_mean = True, batch_size = 1).to(device)
pose_list = list(range(0, self.body_poses.shape[0], frame_interval))
if frame_range is not None:
frame_range = list(frame_range)
if isinstance(frame_range, list):
if isinstance(frame_range[0], list):
self.pose_list = []
for interval in frame_range:
if len(interval) == 2 or len(interval) == 3:
self.pose_list += list(range(*interval))
else:
for i in range(interval[3]):
self.pose_list += list(range(interval[0], interval[1], interval[2]))
else:
if len(frame_range) == 2:
print(f'# Selected frame indices: range({frame_range[0]}, {frame_range[1]})')
frame_range = range(frame_range[0], frame_range[1])
elif len(frame_range) == 3:
print(f'# Selected frame indices: range({frame_range[0]}, {frame_range[1]}, {frame_range[2]})')
frame_range = range(frame_range[0], frame_range[1], frame_range[2])
self.pose_list = list(frame_range)
else:
self.pose_list = pose_list
print('# Pose list: ', self.pose_list)
print('# Dataset contains %d items' % len(self))
# SMPL related
self.smpl_shape = smpl_shape.to(torch.float32).to(device) if smpl_shape is not None else torch.zeros(10, dtype = torch.float32)
ret = self.smpl_model.forward(betas = self.smpl_shape[None],
global_orient = config.cano_smpl_global_orient[None].to(device),
transl = config.cano_smpl_transl[None].to(device),
body_pose = config.cano_smpl_body_pose[None].to(device),
# left_hand_pose = config.left_hand_pose[None],
# right_hand_pose = config.right_hand_pose[None]
)
self.cano_smpl = {k: v[0] for k, v in ret.items() if isinstance(v, torch.Tensor)}
self.inv_cano_jnt_mats = torch.linalg.inv(self.cano_smpl['A'])
min_xyz = self.cano_smpl['vertices'].min(0)[0]
max_xyz = self.cano_smpl['vertices'].max(0)[0]
self.cano_smpl_center = 0.5 * (min_xyz + max_xyz)
min_xyz[:2] -= 0.05
max_xyz[:2] += 0.05
min_xyz[2] -= 0.15
max_xyz[2] += 0.15
self.cano_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).cpu().numpy()
self.smpl_faces = self.smpl_model.faces.astype(np.int32)
self.frame_win = int(frame_win)
self.denoise = denoise
if self.denoise:
win_size = 1
body_poses_clone = self.body_poses.clone()
transl_clone = self.transl.clone()
frame_num = body_poses_clone.shape[0]
self.body_poses[win_size: frame_num-win_size] = 0
self.transl[win_size: frame_num-win_size] = 0
for i in range(-win_size, win_size + 1):
self.body_poses[win_size: frame_num-win_size] += body_poses_clone[win_size+i: frame_num-win_size+i]
self.transl[win_size: frame_num-win_size] += transl_clone[win_size+i: frame_num-win_size+i]
self.body_poses[win_size: frame_num-win_size] /= (2 * win_size + 1)
self.transl[win_size: frame_num-win_size] /= (2 * win_size + 1)
self.hand_pose_type = hand_pose_type
self.device = device
self.last_data_idx = 0
commons._initialize_hands(self)
self.left_cano_mano_v, self.left_cano_mano_n, self.right_cano_mano_v, self.right_cano_mano_n \
= commons.generate_two_manos(self, self.cano_smpl['vertices'])
if constrain_leg_pose:
# a = 14.
# # print(self.body_poses[284, 1*3:2*3])
# # print(self.body_poses[284, 2*3:3*3])
# self.body_poses[:, 1*3] = torch.clip(self.body_poses[:, 1 * 3], -np.pi / a, np.pi / a)
# self.body_poses[:, 2*3] = torch.clip(self.body_poses[:, 2 * 3], -np.pi / a, np.pi / a)
# self.body_poses[:, 1 * 3+2] = torch.clip(self.body_poses[:, 1 * 3+2], -np.pi / a, np.pi / a)
# self.body_poses[:, 2 * 3+2] = torch.clip(self.body_poses[:, 2 * 3+2], -np.pi / a, np.pi / a)
# exit(1)
self.body_poses[:, 4*3] = torch.clip(self.body_poses[:, 4*3], -0.3, 0.3)
self.body_poses[:, 5*3] = torch.clip(self.body_poses[:, 5*3], -0.3, 0.3)
def __len__(self):
return len(self.pose_list)
def __getitem__(self, index):
return self.getitem(index)
@torch.no_grad()
def getitem(self, index, **kwargs):
pose_idx = self.pose_list[index]
if pose_idx == 0 or pose_idx > self.pose_list[min(index - 1, 0)]:
data_idx = pose_idx
else:
data_idx = self.last_data_idx + 1
# print('data index: %d, pose index: %d' % (data_idx, pose_idx))
if self.hand_pose_type == 'fist':
left_hand_pose = config.left_hand_pose.to(self.device).clone()
right_hand_pose = config.right_hand_pose.to(self.device).clone()
left_hand_pose[:3] = 0.
right_hand_pose[:3] = 0.
elif self.hand_pose_type == 'normal':
left_hand_pose = torch.tensor([0.10859203338623047, 0.10181399434804916, -0.2822268009185791, 0.10211331397294998, -0.09689036756753922, -0.4484838545322418, -0.11360692232847214, -0.023141659796237946, 0.10571160167455673, -0.08793719857931137, -0.026760095730423927, -0.41390693187713623, -0.0923849567770958, 0.10266668349504471, -0.36039748787879944, 0.02140655182301998, -0.07156527787446976, -0.04903153330087662, -0.22358819842338562, -0.3716682195663452, -0.2683027982711792, -0.1506909281015396, 0.07079305499792099, -0.34404537081718445, -0.168443500995636, -0.014021224342286587, 0.09489774703979492, -0.050323735922575, -0.18992969393730164, -0.43895423412323, -0.1806418001651764, 0.0198075994849205, -0.25444355607032776, -0.10171788930892944, -0.10680688172578812, -0.09953738003969193, 0.8094075918197632, 0.5156061053276062, -0.07900168001651764, -0.45094889402389526, 0.24947893619537354, 0.23369410634040833, 0.45277315378189087, -0.17375235259532928, -0.3077943027019501], dtype = torch.float32, device = self.device)
right_hand_pose = torch.tensor([0.06415501981973648, -0.06942438334226608, 0.282951682806015, 0.09073827415704727, 0.0775153785943985, 0.2961004376411438, -0.07659692317247391, 0.004730052314698696, -0.12084470689296722, 0.007974660955369473, 0.05222926288843155, 0.32775357365608215, -0.10166633129119873, -0.06862349808216095, 0.174485981464386, -0.0023323255591094494, 0.04998664930462837, -0.03490559384226799, 0.12949667870998383, 0.26883721351623535, 0.06881044059991837, -0.18259745836257935, -0.08183271437883377, 0.17669665813446045, -0.08099694550037384, 0.04115655645728111, -0.17928685247898102, 0.07734024524688721, 0.13419172167778015, 0.2600148022174835, -0.151871919631958, -0.01772170141339302, 0.1267814189195633, -0.08800505846738815, 0.09480107575654984, 0.0016392067773267627, 0.6149336695671082, -0.32634419202804565, 0.02278662845492363, -0.39148610830307007, -0.22757330536842346, -0.07884717732667923, 0.38199105858802795, 0.13064607977867126, 0.20154500007629395], dtype = torch.float32, device = self.device)
elif self.hand_pose_type == 'zero':
left_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
right_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
elif self.hand_pose_type == 'ori':
left_hand_pose = self.left_hand_pose[pose_idx].to(self.device)
right_hand_pose = self.right_hand_pose[pose_idx].to(self.device)
else:
raise ValueError('Invalid hand_pose_type!')
# SMPL
live_smpl = self.smpl_model.forward(betas = self.smpl_shape[None],
global_orient = self.body_poses[pose_idx, :3][None],
transl = self.transl[pose_idx][None],
body_pose = self.body_poses[pose_idx, 3: 66][None],
left_hand_pose = left_hand_pose[None],
right_hand_pose = right_hand_pose[None]
)
# live_smpl_trimesh = trimesh.Trimesh(vertices = live_smpl.vertices[0].cpu().numpy(), faces = self.smpl_model.faces, process = False)
# live_smpl_trimesh.export('./debug/smpl_amass.ply')
# exit(1)
live_smpl_woRoot = self.smpl_model.forward(betas = self.smpl_shape[None],
# global_orient = self.body_poses[pose_idx, :3][None],
# transl = self.transl[pose_idx][None],
body_pose = self.body_poses[pose_idx, 3: 66][None],
# left_hand_pose = config.left_hand_pose[None],
# right_hand_pose = config.right_hand_pose[None]
)
# cano_smpl = self.smpl_model.forward(betas=self.smpl_shape[None],
# global_orient=config.cano_smpl_global_orient[None],
# transl=config.cano_smpl_transl[None],
# body_pose=config.cano_smpl_body_pose[None],
# # left_hand_pose = left_hand_pose[None],
# # right_hand_pose = right_hand_pose[None]
# )
data_item = dict()
data_item['item_idx'] = index
data_item['data_idx'] = data_idx
data_item['global_orient'] = self.body_poses[pose_idx, :3]
data_item['transl'] = self.transl[pose_idx]
data_item['joints'] = live_smpl.joints[0, :22]
data_item['kin_parent'] = self.smpl_model.parents[:22].to(torch.long)
data_item['pose_1st'] = self.body_poses[0, 3: 66]
if self.frame_win > 0:
total_frame_num = len(self.pose_list)
selected_frames = self.pose_list[max(0, index - self.frame_win): min(total_frame_num, index + self.frame_win + 1)]
data_item['pose'] = self.body_poses[selected_frames, 3: 66].clone()
else:
data_item['pose'] = self.body_poses[pose_idx, 3: 66].clone()
if self.fix_head_pose:
data_item['pose'][..., 3 * 11: 3 * 11 + 3] = 0.
data_item['pose'][..., 3 * 14: 3 * 14 + 3] = 0.
if self.fix_hand_pose:
data_item['pose'][..., 3 * 19: 3 * 19 + 3] = 0.
data_item['pose'][..., 3 * 20: 3 * 20 + 3] = 0.
data_item['lhand_pose'] = torch.zeros_like(config.left_hand_pose)
data_item['rhand_pose'] = torch.zeros_like(config.right_hand_pose)
data_item['time_stamp'] = np.array(pose_idx, np.float32)
data_item['live_smpl_v'] = live_smpl.vertices[0]
data_item['live_smpl_v_woRoot'] = live_smpl_woRoot.vertices[0]
data_item['cano_smpl_v'] = self.cano_smpl['vertices']
data_item['cano_jnts'] = self.cano_smpl['joints']
inv_cano_jnt_mats = torch.linalg.inv(self.cano_smpl['A'])
data_item['cano2live_jnt_mats'] = torch.matmul(live_smpl.A[0], inv_cano_jnt_mats)
data_item['cano2live_jnt_mats_woRoot'] = torch.matmul(live_smpl_woRoot.A[0], inv_cano_jnt_mats)
data_item['cano_smpl_center'] = self.cano_smpl_center
data_item['cano_bounds'] = self.cano_bounds
data_item['smpl_faces'] = self.smpl_faces
min_xyz = live_smpl.vertices[0].min(0)[0] - 0.15
max_xyz = live_smpl.vertices[0].max(0)[0] + 0.15
live_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).cpu().numpy()
data_item['live_bounds'] = live_bounds
# # mano
# data_item['left_cano_mano_v'], data_item['left_cano_mano_n'], data_item['right_cano_mano_v'], data_item['right_cano_mano_n']\
# = commons.generate_two_manos(self, self.cano_smpl['vertices'])
# data_item['left_live_mano_v'], data_item['left_live_mano_n'], data_item['right_live_mano_v'], data_item['right_live_mano_n'] \
# = commons.generate_two_manos(self, live_smpl.vertices[0])
""" synthesis config """
img_h = 512 if 'img_h' not in kwargs else kwargs['img_h']
img_w = 512 if 'img_w' not in kwargs else kwargs['img_w']
intr = np.array([[550, 0, 256], [0, 550, 256], [0, 0, 1]], np.float32) if 'intr' not in kwargs else kwargs['intr']
if 'extr' not in kwargs:
extr = visualize_util.calc_front_mv(live_bounds.mean(0), tar_pos = np.array([0, 0, 2.5]))
else:
extr = kwargs['extr']
""" training data config of view_idx """
# view_idx = 0
# img_h = self.img_heights[view_idx]
# img_w = self.img_widths[view_idx]
# intr = self.intr_mats[view_idx]
# extr = self.extr_mats[view_idx]
uv = self.gen_uv(img_w, img_h)
uv = uv.reshape(-1, 2)
ray_d, ray_o = nerf_util.get_rays(uv, extr, intr)
near, far, mask_at_bound = nerf_util.get_near_far(live_bounds, ray_o, ray_d)
uv = uv[mask_at_bound]
ray_o = ray_o[mask_at_bound]
ray_d = ray_d[mask_at_bound]
data_item.update({
'uv': uv,
'ray_o': ray_o,
'ray_d': ray_d,
'near': near,
'far': far,
'dist': np.zeros_like(near),
'img_h': img_h,
'img_w': img_w,
'extr': extr,
'intr': intr
})
return data_item
def getitem_fast(self, index, **kwargs):
pose_idx = self.pose_list[index]
if pose_idx == 0 or pose_idx > self.last_data_idx:
data_idx = pose_idx
else:
data_idx = self.last_data_idx + 1
# print('data index: %d, pose index: %d' % (data_idx, pose_idx))
if self.hand_pose_type == 'fist':
left_hand_pose = config.left_hand_pose.to(self.device)
right_hand_pose = config.right_hand_pose.to(self.device)
elif self.hand_pose_type == 'normal':
left_hand_pose = torch.tensor(
[0.10859203338623047, 0.10181399434804916, -0.2822268009185791, 0.10211331397294998, -0.09689036756753922, -0.4484838545322418, -0.11360692232847214, -0.023141659796237946, 0.10571160167455673, -0.08793719857931137, -0.026760095730423927, -0.41390693187713623, -0.0923849567770958, 0.10266668349504471, -0.36039748787879944, 0.02140655182301998, -0.07156527787446976, -0.04903153330087662, -0.22358819842338562, -0.3716682195663452, -0.2683027982711792, -0.1506909281015396,
0.07079305499792099, -0.34404537081718445, -0.168443500995636, -0.014021224342286587, 0.09489774703979492, -0.050323735922575, -0.18992969393730164, -0.43895423412323, -0.1806418001651764, 0.0198075994849205, -0.25444355607032776, -0.10171788930892944, -0.10680688172578812, -0.09953738003969193, 0.8094075918197632, 0.5156061053276062, -0.07900168001651764, -0.45094889402389526, 0.24947893619537354, 0.23369410634040833, 0.45277315378189087, -0.17375235259532928,
-0.3077943027019501], dtype = torch.float32, device = self.device)
right_hand_pose = torch.tensor(
[0.06415501981973648, -0.06942438334226608, 0.282951682806015, 0.09073827415704727, 0.0775153785943985, 0.2961004376411438, -0.07659692317247391, 0.004730052314698696, -0.12084470689296722, 0.007974660955369473, 0.05222926288843155, 0.32775357365608215, -0.10166633129119873, -0.06862349808216095, 0.174485981464386, -0.0023323255591094494, 0.04998664930462837, -0.03490559384226799, 0.12949667870998383, 0.26883721351623535, 0.06881044059991837, -0.18259745836257935,
-0.08183271437883377, 0.17669665813446045, -0.08099694550037384, 0.04115655645728111, -0.17928685247898102, 0.07734024524688721, 0.13419172167778015, 0.2600148022174835, -0.151871919631958, -0.01772170141339302, 0.1267814189195633, -0.08800505846738815, 0.09480107575654984, 0.0016392067773267627, 0.6149336695671082, -0.32634419202804565, 0.02278662845492363, -0.39148610830307007, -0.22757330536842346, -0.07884717732667923, 0.38199105858802795, 0.13064607977867126,
0.20154500007629395], dtype = torch.float32, device = self.device)
elif self.hand_pose_type == 'zero':
left_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
right_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
elif self.hand_pose_type == 'ori':
left_hand_pose = self.left_hand_pose[pose_idx].to(self.device)
right_hand_pose = self.right_hand_pose[pose_idx].to(self.device)
else:
raise ValueError('Invalid hand_pose_type!')
# SMPL
live_smpl = self.smpl_model.forward(betas = self.smpl_shape[None],
global_orient = self.body_poses[pose_idx, :3][None],
transl = self.transl[pose_idx][None],
body_pose = self.body_poses[pose_idx, 3: 66][None],
left_hand_pose = left_hand_pose[None],
right_hand_pose = right_hand_pose[None]
)
live_smpl_woRoot = self.smpl_model.forward(betas = self.smpl_shape[None],
# global_orient = self.body_poses[pose_idx, :3][None],
# transl = self.transl[pose_idx][None],
body_pose = self.body_poses[pose_idx, 3: 66][None],
# left_hand_pose = config.left_hand_pose[None],
# right_hand_pose = config.right_hand_pose[None]
)
# cano_smpl = self.smpl_model.forward(betas = self.smpl_shape[None],
# global_orient = config.cano_smpl_global_orient[None],
# transl = config.cano_smpl_transl[None],
# body_pose = config.cano_smpl_body_pose[None],
# # left_hand_pose = left_hand_pose[None],
# # right_hand_pose = right_hand_pose[None]
# )
data_item = dict()
data_item['item_idx'] = index
data_item['data_idx'] = data_idx
data_item['global_orient'] = self.body_poses[pose_idx, :3]
data_item['body_pose'] = self.body_poses[pose_idx, 3:66]
data_item['transl'] = self.transl[pose_idx]
data_item['joints'] = live_smpl.joints[0, :22]
data_item['kin_parent'] = self.smpl_model.parents[:22].to(torch.long)
data_item['live_smpl_v'] = live_smpl.vertices[0]
data_item['live_smpl_v_woRoot'] = live_smpl_woRoot.vertices[0]
data_item['cano_smpl_v'] = self.cano_smpl['vertices']
data_item['cano_jnts'] = self.cano_smpl['joints']
inv_cano_jnt_mats = torch.linalg.inv(self.cano_smpl['A'])
data_item['cano2live_jnt_mats'] = torch.matmul(live_smpl.A[0], inv_cano_jnt_mats)
data_item['cano2live_jnt_mats_woRoot'] = torch.matmul(live_smpl_woRoot.A[0], inv_cano_jnt_mats)
data_item['cano_smpl_center'] = self.cano_smpl_center
data_item['cano_bounds'] = self.cano_bounds
data_item['smpl_faces'] = self.smpl_faces
min_xyz = live_smpl.vertices[0].min(0)[0] - 0.15
max_xyz = live_smpl.vertices[0].max(0)[0] + 0.15
live_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).cpu().numpy()
data_item['live_bounds'] = live_bounds
data_item['left_cano_mano_v'], data_item['left_cano_mano_n'], data_item['right_cano_mano_v'], data_item['right_cano_mano_n'] \
= self.left_cano_mano_v, self.left_cano_mano_n, self.right_cano_mano_v, self.right_cano_mano_n
""" synthesis config """
img_h = 512 if 'img_h' not in kwargs else kwargs['img_h']
img_w = 512 if 'img_w' not in kwargs else kwargs['img_w']
intr = np.array([[550, 0, 256], [0, 550, 256], [0, 0, 1]], np.float32) if 'intr' not in kwargs else kwargs['intr']
if 'extr' not in kwargs:
extr = visualize_util.calc_front_mv(live_bounds.mean(0), tar_pos = np.array([0, 0, 2.5]))
else:
extr = kwargs['extr']
data_item.update({
'img_h': img_h,
'img_w': img_w,
'extr': extr,
'intr': intr
})
self.last_data_idx = data_idx
return data_item
def getitem_a_pose(self, **kwargs):
hand_pose_type = 'fist'
if hand_pose_type == 'fist':
left_hand_pose = config.left_hand_pose.to(self.device)
right_hand_pose = config.right_hand_pose.to(self.device)
elif hand_pose_type == 'normal':
left_hand_pose = torch.tensor(
[0.10859203338623047, 0.10181399434804916, -0.2822268009185791, 0.10211331397294998, -0.09689036756753922, -0.4484838545322418, -0.11360692232847214, -0.023141659796237946, 0.10571160167455673, -0.08793719857931137, -0.026760095730423927, -0.41390693187713623, -0.0923849567770958, 0.10266668349504471, -0.36039748787879944, 0.02140655182301998, -0.07156527787446976, -0.04903153330087662, -0.22358819842338562, -0.3716682195663452, -0.2683027982711792, -0.1506909281015396,
0.07079305499792099, -0.34404537081718445, -0.168443500995636, -0.014021224342286587, 0.09489774703979492, -0.050323735922575, -0.18992969393730164, -0.43895423412323, -0.1806418001651764, 0.0198075994849205, -0.25444355607032776, -0.10171788930892944, -0.10680688172578812, -0.09953738003969193, 0.8094075918197632, 0.5156061053276062, -0.07900168001651764, -0.45094889402389526, 0.24947893619537354, 0.23369410634040833, 0.45277315378189087, -0.17375235259532928,
-0.3077943027019501], dtype = torch.float32, device = self.device)
right_hand_pose = torch.tensor(
[0.06415501981973648, -0.06942438334226608, 0.282951682806015, 0.09073827415704727, 0.0775153785943985, 0.2961004376411438, -0.07659692317247391, 0.004730052314698696, -0.12084470689296722, 0.007974660955369473, 0.05222926288843155, 0.32775357365608215, -0.10166633129119873, -0.06862349808216095, 0.174485981464386, -0.0023323255591094494, 0.04998664930462837, -0.03490559384226799, 0.12949667870998383, 0.26883721351623535, 0.06881044059991837, -0.18259745836257935,
-0.08183271437883377, 0.17669665813446045, -0.08099694550037384, 0.04115655645728111, -0.17928685247898102, 0.07734024524688721, 0.13419172167778015, 0.2600148022174835, -0.151871919631958, -0.01772170141339302, 0.1267814189195633, -0.08800505846738815, 0.09480107575654984, 0.0016392067773267627, 0.6149336695671082, -0.32634419202804565, 0.02278662845492363, -0.39148610830307007, -0.22757330536842346, -0.07884717732667923, 0.38199105858802795, 0.13064607977867126,
0.20154500007629395], dtype = torch.float32, device = self.device)
elif self.hand_pose_type == 'zero':
left_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
right_hand_pose = torch.zeros(45, dtype = torch.float32, device = self.device)
else:
raise ValueError('Invalid hand_pose_type!')
body_pose = torch.zeros(21 * 3, dtype = torch.float32).to(self.device)
body_pose[15 * 3 + 2] += -0.8
body_pose[16 * 3 + 2] += 0.8
# SMPL
live_smpl = self.smpl_model.forward(betas = self.smpl_shape[None],
global_orient = None,
transl = None,
body_pose = body_pose[None],
left_hand_pose = left_hand_pose[None],
right_hand_pose = right_hand_pose[None]
)
live_smpl_woRoot = self.smpl_model.forward(betas = self.smpl_shape[None],
# global_orient = self.body_poses[pose_idx, :3][None],
# transl = self.transl[pose_idx][None],
body_pose = body_pose[None],
# left_hand_pose = config.left_hand_pose[None],
# right_hand_pose = config.right_hand_pose[None]
)
# cano_smpl = self.smpl_model.forward(betas = self.smpl_shape[None],
# global_orient = config.cano_smpl_global_orient[None],
# transl = config.cano_smpl_transl[None],
# body_pose = config.cano_smpl_body_pose[None],
# # left_hand_pose = left_hand_pose[None],
# # right_hand_pose = right_hand_pose[None]
# )
data_item = dict()
data_item['item_idx'] = 0
data_item['data_idx'] = 0
data_item['global_orient'] = torch.zeros(3, dtype = torch.float32)
data_item['joints'] = live_smpl.joints[0, :22]
data_item['kin_parent'] = self.smpl_model.parents[:22].to(torch.long)
data_item['live_smpl_v'] = live_smpl.vertices[0]
data_item['live_smpl_v_woRoot'] = live_smpl_woRoot.vertices[0]
data_item['cano_smpl_v'] = self.cano_smpl['vertices']
data_item['cano_jnts'] = self.cano_smpl['joints']
inv_cano_jnt_mats = torch.linalg.inv(self.cano_smpl['A'])
data_item['cano2live_jnt_mats'] = torch.matmul(live_smpl.A[0], inv_cano_jnt_mats)
data_item['cano2live_jnt_mats_woRoot'] = torch.matmul(live_smpl_woRoot.A[0], inv_cano_jnt_mats)
data_item['cano_smpl_center'] = self.cano_smpl_center
data_item['cano_bounds'] = self.cano_bounds
data_item['smpl_faces'] = self.smpl_faces
min_xyz = live_smpl.vertices[0].min(0)[0] - 0.15
max_xyz = live_smpl.vertices[0].max(0)[0] + 0.15
live_bounds = torch.stack([min_xyz, max_xyz], 0).to(torch.float32).cpu().numpy()
data_item['live_bounds'] = live_bounds
data_item['left_cano_mano_v'], data_item['left_cano_mano_n'], data_item['right_cano_mano_v'], data_item['right_cano_mano_n'] \
= self.left_cano_mano_v, self.left_cano_mano_n, self.right_cano_mano_v, self.right_cano_mano_n
""" synthesis config """
img_h = 512 if 'img_h' not in kwargs else kwargs['img_h']
img_w = 300 if 'img_w' not in kwargs else kwargs['img_w']
intr = np.array([[550, 0, 150], [0, 550, 256], [0, 0, 1]], np.float32) if 'intr' not in kwargs else kwargs['intr']
if 'extr' not in kwargs:
extr = visualize_util.calc_front_mv(live_bounds.mean(0), tar_pos = np.array([0, 0, 2.5]))
else:
extr = kwargs['extr']
data_item.update({
'img_h': img_h,
'img_w': img_w,
'extr': extr,
'intr': intr
})
return data_item
@staticmethod
def gen_uv(img_w, img_h):
x, y = np.meshgrid(np.linspace(0, img_w - 1, img_w, dtype = np.int32),
np.linspace(0, img_h - 1, img_h, dtype = np.int32))
uv = np.stack([x, y], axis = -1)
return uv
|