Spaces:
Running
Running
File size: 57,331 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
from ast import dump
import os
from turtle import left
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
# from inflection import camelize
import yaml
import shutil
import collections
import torch
import torch.utils.data
import torch.nn.functional as F
import numpy as np
import cv2 as cv
import glob
import datetime
import trimesh
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import importlib
import json
import config
from network.lpips import LPIPS
from dataset.dataset_pose import PoseDataset
import utils.net_util as net_util
import utils.visualize_util as visualize_util
from utils.renderer import Renderer
from utils.net_util import to_cuda
from utils.obj_io import save_mesh_as_ply
from gaussians.obj_io import save_gaussians_as_ply
def safe_exists(path):
if path is None:
return False
return os.path.exists(path)
class AvatarTrainer:
def __init__(self, opt):
self.opt = opt
self.patch_size = 512
self.iter_idx = 0
self.iter_num = 800000
self.lr_init = float(self.opt['train'].get('lr_init', 5e-4))
avatar_module = self.opt['model'].get('module', 'network.avatar')
print('Import AvatarNet from %s' % avatar_module)
AvatarNet = importlib.import_module(avatar_module).AvatarNet
self.avatar_net = AvatarNet(self.opt['model']).to(config.device)
self.optm = torch.optim.Adam(
self.avatar_net.parameters(), lr = self.lr_init
)
self.random_bg_color = self.opt['train'].get('random_bg_color', True)
self.bg_color = (1., 1., 1.)
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(config.device)
self.loss_weight = self.opt['train']['loss_weight']
self.finetune_color = self.opt['train']['finetune_color']
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
def update_lr(self):
alpha = 0.05
progress = self.iter_idx / self.iter_num
learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha
lr = self.lr_init * learning_factor
for param_group in self.optm.param_groups:
param_group['lr'] = lr
return lr
@staticmethod
def requires_net_grad(net: torch.nn.Module, flag = True):
for p in net.parameters():
p.requires_grad = flag
def crop_image(self, gt_mask, patch_size, randomly, *args):
"""
:param gt_mask: (H, W)
:param patch_size: resize the cropped patch to the given patch_size
:param randomly: whether to randomly sample the patch
:param args: input images with shape of (C, H, W)
"""
mask_uv = torch.argwhere(gt_mask > 0.)
min_v, min_u = mask_uv.min(0)[0]
max_v, max_u = mask_uv.max(0)[0]
len_v = max_v - min_v
len_u = max_u - min_u
max_size = max(len_v, len_u)
cropped_images = []
if randomly and max_size > patch_size:
random_v = torch.randint(0, max_size - patch_size + 1, (1,)).to(max_size)
random_u = torch.randint(0, max_size - patch_size + 1, (1,)).to(max_size)
for image in args:
cropped_image = self.bg_color_cuda[:, None, None] * torch.ones((3, max_size, max_size), dtype = image.dtype, device = image.device)
if len_v > len_u:
start_u = (max_size - len_u) // 2
cropped_image[:, :, start_u: start_u + len_u] = image[:, min_v: max_v, min_u: max_u]
else:
start_v = (max_size - len_v) // 2
cropped_image[:, start_v: start_v + len_v, :] = image[:, min_v: max_v, min_u: max_u]
if randomly and max_size > patch_size:
cropped_image = cropped_image[:, random_v: random_v + patch_size, random_u: random_u + patch_size]
else:
cropped_image = F.interpolate(cropped_image[None], size = (patch_size, patch_size), mode = 'bilinear')[0]
cropped_images.append(cropped_image)
# cv.imshow('cropped_image', cropped_image.detach().cpu().numpy().transpose(1, 2, 0))
# cv.imshow('cropped_gt_image', cropped_gt_image.detach().cpu().numpy().transpose(1, 2, 0))
# cv.waitKey(0)
if len(cropped_images) > 1:
return cropped_images
else:
return cropped_images[0]
def compute_lpips_loss(self, image, gt_image):
assert image.shape[1] == image.shape[2] and gt_image.shape[1] == gt_image.shape[2]
lpips_loss = self.lpips.forward(
image[None, [2, 1, 0]],
gt_image[None, [2, 1, 0]],
normalize = True
).mean()
return lpips_loss
def forward_one_pass_pretrain(self, items):
total_loss = 0
batch_losses = {}
l1_loss = torch.nn.L1Loss()
items = net_util.delete_batch_idx(items)
pose_map = items['smpl_pos_map'][:3]
position_loss = l1_loss(self.avatar_net.get_positions(pose_map), self.avatar_net.cano_gaussian_model.get_xyz)
total_loss += position_loss
batch_losses.update({
'position': position_loss.item()
})
opacity, scales, rotations = self.avatar_net.get_others(pose_map)
opacity_loss = l1_loss(opacity, self.avatar_net.cano_gaussian_model.get_opacity)
total_loss += opacity_loss
batch_losses.update({
'opacity': opacity_loss.item()
})
scale_loss = l1_loss(scales, self.avatar_net.cano_gaussian_model.get_scaling)
total_loss += scale_loss
batch_losses.update({
'scale': scale_loss.item()
})
rotation_loss = l1_loss(rotations, self.avatar_net.cano_gaussian_model.get_rotation)
total_loss += rotation_loss
batch_losses.update({
'rotation': rotation_loss.item()
})
total_loss.backward()
self.optm.step()
self.optm.zero_grad()
return total_loss, batch_losses
def forward_one_pass(self, items):
# forward_start = torch.cuda.Event(enable_timing = True)
# forward_end = torch.cuda.Event(enable_timing = True)
# backward_start = torch.cuda.Event(enable_timing = True)
# backward_end = torch.cuda.Event(enable_timing = True)
# step_start = torch.cuda.Event(enable_timing = True)
# step_end = torch.cuda.Event(enable_timing = True)
if self.random_bg_color:
self.bg_color = np.random.rand(3)
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(config.device)
total_loss = 0
batch_losses = {}
items = net_util.delete_batch_idx(items)
""" Optimize generator """
if self.finetune_color:
self.requires_net_grad(self.avatar_net.color_net, True)
self.requires_net_grad(self.avatar_net.position_net, False)
self.requires_net_grad(self.avatar_net.other_net, True)
else:
self.requires_net_grad(self.avatar_net, True)
# forward_start.record()
render_output = self.avatar_net.render(items, self.bg_color)
image = render_output['rgb_map'].permute(2, 0, 1)
offset = render_output['offset']
# mask image & set bg color
items['color_img'][~items['mask_img']] = self.bg_color_cuda
gt_image = items['color_img'].permute(2, 0, 1)
mask_img = items['mask_img'].to(torch.float32)
boundary_mask_img = 1. - items['boundary_mask_img'].to(torch.float32)
image = image * boundary_mask_img[None] + (1. - boundary_mask_img[None]) * self.bg_color_cuda[:, None, None]
gt_image = gt_image * boundary_mask_img[None] + (1. - boundary_mask_img[None]) * self.bg_color_cuda[:, None, None]
# cv.imshow('image', image.detach().permute(1, 2, 0).cpu().numpy())
# cv.imshow('gt_image', gt_image.permute(1, 2, 0).cpu().numpy())
# cv.waitKey(0)
if self.loss_weight['l1'] > 0.:
l1_loss = torch.abs(image - gt_image).mean()
total_loss += self.loss_weight['l1'] * l1_loss
batch_losses.update({
'l1_loss': l1_loss.item()
})
if self.loss_weight.get('mask', 0.) and 'mask_map' in render_output:
rendered_mask = render_output['mask_map'].squeeze(-1) * boundary_mask_img
gt_mask = mask_img * boundary_mask_img
# cv.imshow('rendered_mask', rendered_mask.detach().cpu().numpy())
# cv.imshow('gt_mask', gt_mask.detach().cpu().numpy())
# cv.waitKey(0)
mask_loss = torch.abs(rendered_mask - gt_mask).mean()
# mask_loss = torch.nn.BCELoss()(rendered_mask, gt_mask)
total_loss += self.loss_weight.get('mask', 0.) * mask_loss
batch_losses.update({
'mask_loss': mask_loss.item()
})
if self.loss_weight['lpips'] > 0.:
# crop images
random_patch_flag = False if self.iter_idx < 300000 else True
image, gt_image = self.crop_image(mask_img, self.patch_size, random_patch_flag, image, gt_image)
# cv.imshow('image', image.detach().permute(1, 2, 0).cpu().numpy())
# cv.imshow('gt_image', gt_image.permute(1, 2, 0).cpu().numpy())
# cv.waitKey(0)
lpips_loss = self.compute_lpips_loss(image, gt_image)
total_loss += self.loss_weight['lpips'] * lpips_loss
batch_losses.update({
'lpips_loss': lpips_loss.item()
})
# if self.loss_weight['offset'] > 0.:
if True:
offset_loss = torch.linalg.norm(offset, dim = -1).mean()
total_loss += self.loss_weight['offset'] * offset_loss
batch_losses.update({
'offset_loss': offset_loss.item()
})
# forward_end.record()
# backward_start.record()
total_loss.backward()
# backward_end.record()
# step_start.record()
self.optm.step()
self.optm.zero_grad()
# step_end.record()
# torch.cuda.synchronize()
# print(f'Forward costs: {forward_start.elapsed_time(forward_end) / 1000.}, ',
# f'Backward costs: {backward_start.elapsed_time(backward_end) / 1000.}, ',
# f'Step costs: {step_start.elapsed_time(step_end) / 1000.}')
return total_loss, batch_losses
def pretrain(self):
dataset_module = self.opt['train'].get('dataset', 'MvRgbDatasetAvatarReX')
MvRgbDataset = importlib.import_module('dataset.dataset_mv_rgb').__getattribute__(dataset_module)
self.dataset = MvRgbDataset(**self.opt['train']['data'])
batch_size = self.opt['train']['batch_size']
num_workers = self.opt['train']['num_workers']
batch_num = len(self.dataset) // batch_size
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size = batch_size,
shuffle = True,
num_workers = num_workers,
drop_last = True)
# tb writer
log_dir = self.opt['train']['net_ckpt_dir'] + '/' + datetime.datetime.now().strftime('pretrain_%Y_%m_%d_%H_%M_%S')
writer = SummaryWriter(log_dir)
smooth_interval = 10
smooth_count = 0
smooth_losses = {}
for epoch_idx in range(0, 9999999):
self.epoch_idx = epoch_idx
for batch_idx, items in enumerate(dataloader):
self.iter_idx = batch_idx + epoch_idx * batch_num
items = to_cuda(items)
# one_step_start.record()
total_loss, batch_losses = self.forward_one_pass_pretrain(items)
# one_step_end.record()
# torch.cuda.synchronize()
# print('One step costs %f secs' % (one_step_start.elapsed_time(one_step_end) / 1000.))
# record batch loss
for key, loss in batch_losses.items():
if key in smooth_losses:
smooth_losses[key] += loss
else:
smooth_losses[key] = loss
smooth_count += 1
if self.iter_idx % smooth_interval == 0:
log_info = 'epoch %d, batch %d, iter %d, ' % (epoch_idx, batch_idx, self.iter_idx)
for key in smooth_losses.keys():
smooth_losses[key] /= smooth_count
writer.add_scalar('%s/Iter' % key, smooth_losses[key], self.iter_idx)
log_info = log_info + ('%s: %f, ' % (key, smooth_losses[key]))
smooth_losses[key] = 0.
smooth_count = 0
print(log_info)
with open(os.path.join(log_dir, 'loss.txt'), 'a') as fp:
fp.write(log_info + '\n')
if self.iter_idx % 200 == 0 and self.iter_idx != 0:
self.mini_test(pretraining = True)
if self.iter_idx == 5000:
model_folder = self.opt['train']['net_ckpt_dir'] + '/pretrained'
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder, save_optm = True)
self.iter_idx = 0
return
def train(self):
dataset_module = self.opt['train'].get('dataset', 'MvRgbDatasetAvatarReX')
MvRgbDataset = importlib.import_module('dataset.dataset_mv_rgb').__getattribute__(dataset_module)
self.dataset = MvRgbDataset(**self.opt['train']['data'])
batch_size = self.opt['train']['batch_size']
num_workers = self.opt['train']['num_workers']
batch_num = len(self.dataset) // batch_size
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size = batch_size,
shuffle = True,
num_workers = num_workers,
drop_last = True)
if 'lpips' in self.opt['train']['loss_weight']:
self.lpips = LPIPS(net = 'vgg').to(config.device)
for p in self.lpips.parameters():
p.requires_grad = False
if self.opt['train']['prev_ckpt'] is not None:
start_epoch, self.iter_idx = self.load_ckpt(self.opt['train']['prev_ckpt'], load_optm = True)
start_epoch += 1
self.iter_idx += 1
else:
prev_ckpt_path = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
if safe_exists(prev_ckpt_path):
start_epoch, self.iter_idx = self.load_ckpt(prev_ckpt_path, load_optm = True)
start_epoch += 1
self.iter_idx += 1
else:
if safe_exists(self.opt['train']['pretrained_dir']):
self.load_ckpt(self.opt['train']['pretrained_dir'], load_optm = False)
elif safe_exists(self.opt['train']['net_ckpt_dir'] + '/pretrained'):
self.load_ckpt(self.opt['train']['net_ckpt_dir'] + '/pretrained', load_optm = False)
else:
raise FileNotFoundError('Cannot find pretrained checkpoint!')
self.optm.state = collections.defaultdict(dict)
start_epoch = 0
self.iter_idx = 0
# one_step_start = torch.cuda.Event(enable_timing = True)
# one_step_end = torch.cuda.Event(enable_timing = True)
# tb writer
log_dir = self.opt['train']['net_ckpt_dir'] + '/' + datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
writer = SummaryWriter(log_dir)
yaml.dump(self.opt, open(log_dir + '/config_bk.yaml', 'w'), sort_keys = False)
smooth_interval = 10
smooth_count = 0
smooth_losses = {}
for epoch_idx in range(start_epoch, 9999999):
self.epoch_idx = epoch_idx
for batch_idx, items in enumerate(dataloader):
lr = self.update_lr()
items = to_cuda(items)
# one_step_start.record()
total_loss, batch_losses = self.forward_one_pass(items)
# one_step_end.record()
# torch.cuda.synchronize()
# print('One step costs %f secs' % (one_step_start.elapsed_time(one_step_end) / 1000.))
# record batch loss
for key, loss in batch_losses.items():
if key in smooth_losses:
smooth_losses[key] += loss
else:
smooth_losses[key] = loss
smooth_count += 1
if self.iter_idx % smooth_interval == 0:
log_info = 'epoch %d, batch %d, iter %d, lr %e, ' % (epoch_idx, batch_idx, self.iter_idx, lr)
for key in smooth_losses.keys():
smooth_losses[key] /= smooth_count
writer.add_scalar('%s/Iter' % key, smooth_losses[key], self.iter_idx)
log_info = log_info + ('%s: %f, ' % (key, smooth_losses[key]))
smooth_losses[key] = 0.
smooth_count = 0
print(log_info)
with open(os.path.join(log_dir, 'loss.txt'), 'a') as fp:
fp.write(log_info + '\n')
torch.cuda.empty_cache()
if self.iter_idx % self.opt['train']['eval_interval'] == 0 and self.iter_idx != 0:
if self.iter_idx % (10 * self.opt['train']['eval_interval']) == 0:
eval_cano_pts = True
else:
eval_cano_pts = False
self.mini_test(eval_cano_pts = eval_cano_pts)
if self.iter_idx % self.opt['train']['ckpt_interval']['batch'] == 0 and self.iter_idx != 0:
for folder in glob.glob(self.opt['train']['net_ckpt_dir'] + '/batch_*'):
shutil.rmtree(folder)
model_folder = self.opt['train']['net_ckpt_dir'] + '/batch_%d' % self.iter_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder, save_optm = True)
if self.iter_idx == self.iter_num:
print('# Training is done.')
return
self.iter_idx += 1
""" End of epoch """
if epoch_idx % self.opt['train']['ckpt_interval']['epoch'] == 0 and epoch_idx != 0:
model_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_%d' % epoch_idx
os.makedirs(model_folder, exist_ok = True)
self.save_ckpt(model_folder)
if batch_num > 50:
latest_folder = self.opt['train']['net_ckpt_dir'] + '/epoch_latest'
os.makedirs(latest_folder, exist_ok = True)
self.save_ckpt(latest_folder)
@torch.no_grad()
def mini_test(self, pretraining = False, eval_cano_pts = False):
self.avatar_net.eval()
img_factor = self.opt['train'].get('eval_img_factor', 1.0)
# training data
pose_idx, view_idx = self.opt['train'].get('eval_training_ids', (310, 19))
intr = self.dataset.intr_mats[view_idx].copy()
intr[:2] *= img_factor
item = self.dataset.getitem(0,
pose_idx = pose_idx,
view_idx = view_idx,
training = False,
eval = True,
img_h = int(self.dataset.img_heights[view_idx] * img_factor),
img_w = int(self.dataset.img_widths[view_idx] * img_factor),
extr = self.dataset.extr_mats[view_idx],
intr = intr,
exact_hand_pose = True)
items = net_util.to_cuda(item, add_batch = False)
gs_render = self.avatar_net.render(items, self.bg_color)
# gs_render = self.avatar_net.render_debug(items)
rgb_map = gs_render['rgb_map']
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map.cpu().numpy() * 255).astype(np.uint8)
# cv.imshow('rgb_map', rgb_map.cpu().numpy())
# cv.waitKey(0)
if not pretraining:
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval/training'
else:
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval_pretrain/training'
gt_image, _ = self.dataset.load_color_mask_images(pose_idx, view_idx)
if gt_image is not None:
gt_image = cv.resize(gt_image, (0, 0), fx = img_factor, fy = img_factor)
rgb_map = np.concatenate([rgb_map, gt_image], 1)
os.makedirs(output_dir, exist_ok = True)
cv.imwrite(output_dir + '/iter_%d.jpg' % self.iter_idx, rgb_map)
if eval_cano_pts:
os.makedirs(output_dir + '/cano_pts', exist_ok = True)
save_mesh_as_ply(output_dir + '/cano_pts/iter_%d.ply' % self.iter_idx, (self.avatar_net.init_points + gs_render['offset']).cpu().numpy())
# training data
pose_idx, view_idx = self.opt['train'].get('eval_testing_ids', (310, 19))
intr = self.dataset.intr_mats[view_idx].copy()
intr[:2] *= img_factor
item = self.dataset.getitem(0,
pose_idx = pose_idx,
view_idx = view_idx,
training = False,
eval = True,
img_h = int(self.dataset.img_heights[view_idx] * img_factor),
img_w = int(self.dataset.img_widths[view_idx] * img_factor),
extr = self.dataset.extr_mats[view_idx],
intr = intr,
exact_hand_pose = True)
items = net_util.to_cuda(item, add_batch = False)
gs_render = self.avatar_net.render(items, bg_color = self.bg_color)
# gs_render = self.avatar_net.render_debug(items)
rgb_map = gs_render['rgb_map']
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map.cpu().numpy() * 255).astype(np.uint8)
# cv.imshow('rgb_map', rgb_map.cpu().numpy())
# cv.waitKey(0)
if not pretraining:
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval/testing'
else:
output_dir = self.opt['train']['net_ckpt_dir'] + '/eval_pretrain/testing'
gt_image, _ = self.dataset.load_color_mask_images(pose_idx, view_idx)
if gt_image is not None:
gt_image = cv.resize(gt_image, (0, 0), fx = img_factor, fy = img_factor)
rgb_map = np.concatenate([rgb_map, gt_image], 1)
os.makedirs(output_dir, exist_ok = True)
cv.imwrite(output_dir + '/iter_%d.jpg' % self.iter_idx, rgb_map)
if eval_cano_pts:
os.makedirs(output_dir + '/cano_pts', exist_ok = True)
save_mesh_as_ply(output_dir + '/cano_pts/iter_%d.ply' % self.iter_idx, (self.avatar_net.init_points + gs_render['offset']).cpu().numpy())
self.avatar_net.train()
def dump_renderer_info(self, dump_dir, extrs, intrs, img_heights, img_widths):
with open(os.path.join(dump_dir, 'cfg_args'), 'w') as fp:
outstr = "Namespace(sh_degree=%d, source_path='%s', model_path='%s', images='images', resolution=-1, " \
"white_background=False, data_device='cuda', eval=False)" % (
3, self.opt['train']['data']['data_dir'], dump_dir)
fp.write(outstr)
with open(os.path.join(dump_dir, 'cameras.json'), 'w') as fp:
cam_jsons = []
for ci in range(len(extrs)):
extr, intr = extrs[ci], intrs[ci]
img_h, img_w = img_heights[ci], img_widths[ci]
w2c = extr
c2w = np.linalg.inv(w2c)
pos = c2w[:3, 3]
rot = c2w[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'id': ci,
'img_name': '%08d' % ci,
'width': int(img_w),
'height': int(img_h),
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy': float(intr[1, 1]),
'fx': float(intr[0, 0]),
}
cam_jsons.append(camera_entry)
json.dump(cam_jsons, fp)
return
@torch.no_grad()
def test(self):
self.avatar_net.eval()
# ipdb.set_trace()
dataset_module = self.opt['train'].get('dataset', 'MvRgbDatasetAvatarReX')
MvRgbDataset = importlib.import_module('dataset.dataset_mv_rgb').__getattribute__(dataset_module)
training_dataset = MvRgbDataset(**self.opt['train']['data'], training = False)
if self.opt['test'].get('n_pca', -1) >= 1:
training_dataset.compute_pca(n_components = self.opt['test']['n_pca'])
if 'pose_data' in self.opt['test']:
testing_dataset = PoseDataset(**self.opt['test']['pose_data'], smpl_shape = training_dataset.smpl_data['betas'][0])
dataset_name = testing_dataset.dataset_name
seq_name = testing_dataset.seq_name
else:
testing_dataset = MvRgbDataset(**self.opt['test']['data'], training = False)
dataset_name = 'training'
seq_name = ''
# print('come here')
self.dataset = testing_dataset
iter_idx = self.load_ckpt(self.opt['test']['prev_ckpt'], False)[1]
output_dir = self.opt['test'].get('output_dir', None)
if output_dir is None:
view_setting = config.opt['test'].get('view_setting', 'free')
if view_setting == 'camera':
view_folder = 'cam_%03d' % config.opt['test']['render_view_idx']
else:
view_folder = view_setting + '_view'
exp_name = os.path.basename(os.path.dirname(self.opt['test']['prev_ckpt']))
output_dir = f'./test_results/{training_dataset.subject_name}/{exp_name}/{dataset_name}_{seq_name}_{view_folder}' + '/batch_%06d' % iter_idx
use_pca = self.opt['test'].get('n_pca', -1) >= 1
if use_pca:
output_dir += '/pca_%d_sigma_%.2f' % (self.opt['test'].get('n_pca', -1), float(self.opt['test'].get('sigma_pca', 1.)))
else:
output_dir += '/vanilla'
print('# Output dir: \033[1;31m%s\033[0m' % output_dir)
os.makedirs(output_dir + '/live_skeleton', exist_ok = True)
os.makedirs(output_dir + '/rgb_map', exist_ok = True)
os.makedirs(output_dir + '/rgb_map_wo_hand', exist_ok = True)
os.makedirs(output_dir + '/torso_map', exist_ok = True)
os.makedirs(output_dir + '/mask_map', exist_ok = True)
os.makedirs(output_dir + '/posed_gaussians', exist_ok = True)
os.makedirs(output_dir + '/posed_params', exist_ok = True)
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
geo_renderer = None
item_0 = self.dataset.getitem(0, training = False)
object_center = item_0['live_bounds'].mean(0)
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
# set x and z to 0
global_orient[0] = 0
global_orient[2] = 0
global_orient = cv.Rodrigues(global_orient)[0]
# print('object_center: ', object_center.tolist())
# print('global_orient: ', global_orient.tolist())
# exit(1)
time_start = torch.cuda.Event(enable_timing = True)
time_start_all = torch.cuda.Event(enable_timing = True)
time_end = torch.cuda.Event(enable_timing = True)
data_num = len(self.dataset)
if self.opt['test'].get('fix_hand', False):
self.avatar_net.generate_mean_hands()
log_time = False
# extr = visualize_util.calc_free_mv(object_center,
# tar_pos = np.array([0, 0, 2.5]),
# rot_Y = 0.,
# rot_X = 0.,
# global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
# intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
# img_scale = self.opt['test'].get('img_scale', 1.0)
# intr[:2] *= img_scale
# img_h = int(1024 * img_scale)
# img_w = int(1024 * img_scale)
# self.dump_renderer_info(output_dir, [extr], [intr], [img_h], [img_w])
extr_list = []
intr_list = []
img_h_list = []
img_w_list = []
for idx in tqdm(range(data_num), desc = 'Rendering avatars...'):
if log_time:
time_start.record()
time_start_all.record()
img_scale = self.opt['test'].get('img_scale', 1.0)
view_setting = config.opt['test'].get('view_setting', 'free')
if view_setting == 'camera':
# training view setting
cam_id = config.opt['test']['render_view_idx']
intr = self.dataset.intr_mats[cam_id].copy()
intr[:2] *= img_scale
extr = self.dataset.extr_mats[cam_id].copy()
img_h, img_w = int(self.dataset.img_heights[cam_id] * img_scale), int(self.dataset.img_widths[cam_id] * img_scale)
elif view_setting.startswith('free'):
# free view setting
# frame_num_per_circle = 360
print(self.opt['test'].get('global_orient', False))
frame_num_per_circle = 360
rot_Y = (idx % frame_num_per_circle) / float(frame_num_per_circle) * 2 * np.pi
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('degree120'):
print('we render 120 degree')
# +- 60 degree
frame_per_cycle = 480
max_degree = 60
frame_half_cycle = frame_per_cycle // 2
if idx%frame_per_cycle < frame_per_cycle/2:
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
else:
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# to radian
rot_Y = rot_Y * np.pi / 180
if rot_Y<0:
rot_Y = rot_Y + 2 * np.pi
# print('rot_Y: ', rot_Y)
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('degree90'):
print('we render 90 degree')
# +- 60 degree
frame_per_cycle = 360
max_degree = 45
frame_half_cycle = frame_per_cycle // 2
if idx%frame_per_cycle < frame_per_cycle/2:
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
else:
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# to radian
rot_Y = rot_Y * np.pi / 180
if rot_Y<0:
rot_Y = rot_Y + 2 * np.pi
# print('rot_Y: ', rot_Y)
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('front'):
# front view setting
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = 0.,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
# print('extr: ', extr)
# print('intr: ', intr)
# print('img_h: ', img_h)
# print('img_w: ', img_w)
# exit()
elif view_setting.startswith('back'):
# back view setting
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = np.pi,
rot_X = 0.5 * np.pi / 4. if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
elif view_setting.startswith('moving'):
# moving camera setting
extr = visualize_util.calc_free_mv(object_center,
# tar_pos = np.array([0, 0, 3.0]),
# rot_Y = -0.3,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = 0.,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.opt['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
elif view_setting.startswith('cano'):
cano_center = self.dataset.cano_bounds.mean(0)
extr = np.identity(4, np.float32)
extr[:3, 3] = -cano_center
rot_x = np.identity(4, np.float32)
rot_x[:3, :3] = cv.Rodrigues(np.array([np.pi, 0, 0], np.float32))[0]
extr = rot_x @ extr
f_len = 5000
extr[2, 3] += f_len / 512
intr = np.array([[f_len, 0, 512], [0, f_len, 512], [0, 0, 1]], np.float32)
# item = self.dataset.getitem(idx,
# training = False,
# extr = extr,
# intr = intr,
# img_w = 1024,
# img_h = 1024)
img_w, img_h = 1024, 1024
# item['live_smpl_v'] = item['cano_smpl_v']
# item['cano2live_jnt_mats'] = torch.eye(4, dtype = torch.float32)[None].expand(item['cano2live_jnt_mats'].shape[0], -1, -1)
# item['live_bounds'] = item['cano_bounds']
else:
raise ValueError('Invalid view setting for animation!')
self.dump_renderer_info(output_dir, extr_list, intr_list, img_h_list, img_w_list)
# also save the extr and intr and img_h and img_w to json
camera_info = []
for i in range(len(extr_list)):
camera = {}
camera['extr'] = extr_list[i].tolist()
camera['intr'] = intr_list[i].tolist()
camera['img_h'] = img_h_list[i]
camera['img_w'] = img_w_list[i]
camera_info.append(camera)
with open(os.path.join(output_dir, 'camera_info.json'), 'w') as fp:
json.dump(camera_info, fp)
getitem_func = self.dataset.getitem_fast if hasattr(self.dataset, 'getitem_fast') else self.dataset.getitem
item = getitem_func(
idx,
training = False,
extr = extr,
intr = intr,
img_w = img_w,
img_h = img_h
)
items = to_cuda(item, add_batch = False)
if view_setting.startswith('moving') or view_setting == 'free_moving':
current_center = items['live_bounds'].cpu().numpy().mean(0)
delta = current_center - object_center
object_center[0] += delta[0]
# object_center[1] += delta[1]
# object_center[2] += delta[2]
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Loading data costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if self.opt['test'].get('render_skeleton', False):
from utils.visualize_skeletons import construct_skeletons
skel_vertices, skel_faces = construct_skeletons(item['joints'].cpu().numpy(), item['kin_parent'].cpu().numpy())
skel_mesh = trimesh.Trimesh(skel_vertices, skel_faces, process = False)
if geo_renderer is None:
geo_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'phong_geometry', bg_color = (1, 1, 1))
extr, intr = item['extr'], item['intr']
geo_renderer.set_camera(extr, intr)
geo_renderer.set_model(skel_vertices[skel_faces.reshape(-1)], skel_mesh.vertex_normals.astype(np.float32)[skel_faces.reshape(-1)])
skel_img = geo_renderer.render()[:, :, :3]
skel_img = (skel_img * 255).astype(np.uint8)
cv.imwrite(output_dir + '/live_skeleton/%08d.jpg' % item['data_idx'], skel_img)
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering skeletons costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if 'smpl_pos_map' not in items:
self.avatar_net.get_pose_map(items)
# pca
if use_pca:
mask = training_dataset.pos_map_mask
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
pose_conds = front_live_pos_map[mask]
new_pose_conds = training_dataset.transform_pca(pose_conds, sigma_pca = float(self.opt['test'].get('sigma_pca', 2.)))
front_live_pos_map[mask] = new_pose_conds
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
items.update({
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(config.device).permute(2, 0, 1)
})
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering pose conditions costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering avatar costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if 'rgb_map' in output_wo_hand:
rgb_map_wo_hand = output_wo_hand['rgb_map']
if 'full_body_rgb_map' in mask_output:
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
full_body_mask = mask_output['full_body_rgb_map']
full_body_mask.clip_(0., 1.)
full_body_mask = (full_body_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/full_body_mask/%08d.png' % item['data_idx'], full_body_mask.cpu().numpy())
if 'hand_only_rgb_map' in mask_output:
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
hand_only_mask = mask_output['hand_only_rgb_map']
hand_only_mask.clip_(0., 1.)
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/hand_only_mask/%08d.png' % item['data_idx'], hand_only_mask.cpu().numpy())
if 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
# mask only covers hand
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.01
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
# 保存左右手被遮挡部分的mask
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
all_mask = red_mask | blue_mask
# now save 3 mask to 3 folders
os.makedirs(output_dir + '/hand_mask', exist_ok = True)
os.makedirs(output_dir + '/r_hand_mask', exist_ok = True)
os.makedirs(output_dir + '/l_hand_mask', exist_ok = True)
os.makedirs(output_dir + '/hand_visual', exist_ok = True)
all_mask = (all_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/hand_mask/%08d.png' % item['data_idx'], all_mask.cpu().numpy())
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/r_hand_mask/%08d.png' % item['data_idx'], r_hand_mask.cpu().numpy())
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/l_hand_mask/%08d.png' % item['data_idx'], l_hand_mask.cpu().numpy())
hand_visual = [if_mask_r_hand, if_mask_l_hand]
# save to npy
with open(output_dir + '/hand_visual/%08d.npy' % item['data_idx'], 'wb') as f:
np.save(f, hand_visual)
# now build sleeve_mask
if 'left_hand_rgb_map' in mask_output and 'right_hand_rgb_map' in mask_output:
os.makedirs(output_dir + '/left_sleeve_mask', exist_ok = True)
os.makedirs(output_dir + '/right_sleeve_mask', exist_ok = True)
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
mask = mask.cpu().numpy().astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = torch.tensor(mask).to(config.device)
left_hand_mask = mask_output['left_hand_rgb_map']
left_hand_mask.clip_(0., 1.)
# non white part is mask
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
# dele two hand mask
left_hand_mask = left_hand_mask & ~mask
right_hand_mask = mask_output['right_hand_rgb_map']
right_hand_mask.clip_(0., 1.)
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
right_hand_mask = right_hand_mask & ~mask
# save
left_hand_mask = (left_hand_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/left_sleeve_mask/%08d.png' % item['data_idx'], left_hand_mask.cpu().numpy())
right_hand_mask = (right_hand_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/right_sleeve_mask/%08d.png' % item['data_idx'], right_hand_mask.cpu().numpy())
rgb_map = output['rgb_map']
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
cv.imwrite(output_dir + '/rgb_map/%08d.jpg' % item['data_idx'], rgb_map)
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
if 'rgb_map' in output_wo_hand and 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
rgb_map_wo_hand = output_wo_hand['rgb_map']
rgb_map_wo_hand.clip_(0., 1.)
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
r_mask = (r_hand_mask>128).cpu().numpy()
l_mask = (l_hand_mask>128).cpu().numpy()
mask = r_mask | l_mask
mask = mask.astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = mask.astype(np.bool_)
mask = np.expand_dims(mask, axis=2)
# print('mask shape: ', mask.shape)
import ipdb
# ipdb.set_trace()
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
cv.imwrite(output_dir + '/rgb_map_wo_hand/%08d.jpg' % item['data_idx'], mix)
if 'torso_map' in output:
os.makedirs(output_dir + '/torso_map', exist_ok = True)
torso_map = output['torso_map'][:, :, 0]
torso_map.clip_(0., 1.)
torso_map = (torso_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/torso_map/%08d.png' % item['data_idx'], torso_map.cpu().numpy())
if 'mask_map' in output:
os.makedirs(output_dir + '/mask_map', exist_ok = True)
mask_map = output['mask_map'][:, :, 0]
mask_map.clip_(0., 1.)
mask_map = (mask_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/mask_map/%08d.png' % item['data_idx'], mask_map.cpu().numpy())
if self.opt['test'].get('save_tex_map', False):
os.makedirs(output_dir + '/cano_tex_map', exist_ok = True)
cano_tex_map = output['cano_tex_map']
cano_tex_map.clip_(0., 1.)
cano_tex_map = (cano_tex_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/cano_tex_map/%08d.jpg' % item['data_idx'], cano_tex_map.cpu().numpy())
if self.opt['test'].get('save_ply', False):
if item['data_idx'] == 0:
save_gaussians_as_ply(output_dir + '/posed_gaussians/%08d.ply' % item['data_idx'], output['posed_gaussians'])
for k in output['posed_gaussians'].keys():
if isinstance(output['posed_gaussians'][k], torch.Tensor):
output['posed_gaussians'][k] = output['posed_gaussians'][k].detach().cpu().numpy()
np.savez(output_dir + '/posed_gaussians/%08d.npz' % item['data_idx'], **output['posed_gaussians'])
np.savez(output_dir + ('/posed_params/%08d.npz' % item['data_idx']),
betas=training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
global_orient=item['global_orient'].reshape([-1]).detach().cpu().numpy(),
transl=item['transl'].reshape([-1]).detach().cpu().numpy(),
body_pose=item['body_pose'].reshape([-1]).detach().cpu().numpy())
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Saving images costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
print('Animating one frame costs %.4f secs' % (time_start_all.elapsed_time(time_end) / 1000.))
torch.cuda.empty_cache()
def save_ckpt(self, path, save_optm = True):
os.makedirs(path, exist_ok = True)
net_dict = {
'epoch_idx': self.epoch_idx,
'iter_idx': self.iter_idx,
'avatar_net': self.avatar_net.state_dict(),
}
print('Saving networks to ', path + '/net.pt')
torch.save(net_dict, path + '/net.pt')
if save_optm:
optm_dict = {
'avatar_net': self.optm.state_dict(),
}
print('Saving optimizers to ', path + '/optm.pt')
torch.save(optm_dict, path + '/optm.pt')
def load_ckpt(self, path, load_optm = True):
print('Loading networks from ', path + '/net.pt')
net_dict = torch.load(path + '/net.pt')
if 'avatar_net' in net_dict:
self.avatar_net.load_state_dict(net_dict['avatar_net'])
else:
print('[WARNING] Cannot find "avatar_net" from the network checkpoint!')
epoch_idx = net_dict['epoch_idx']
iter_idx = net_dict['iter_idx']
if load_optm and os.path.exists(path + '/optm.pt'):
print('Loading optimizers from ', path + '/optm.pt')
optm_dict = torch.load(path + '/optm.pt')
if 'avatar_net' in optm_dict:
self.optm.load_state_dict(optm_dict['avatar_net'])
else:
print('[WARNING] Cannot find "avatar_net" from the optimizer checkpoint!')
return epoch_idx, iter_idx
if __name__ == '__main__':
torch.manual_seed(31359)
np.random.seed(31359)
# torch.autograd.set_detect_anomaly(True)
from argparse import ArgumentParser
arg_parser = ArgumentParser()
arg_parser.add_argument('-c', '--config_path', type = str, help = 'Configuration file path.')
arg_parser.add_argument('-m', '--mode', type = str, help = 'Running mode.', default = 'train')
args = arg_parser.parse_args()
config.load_global_opt(args.config_path)
if args.mode is not None:
config.opt['mode'] = args.mode
trainer = AvatarTrainer(config.opt)
if config.opt['mode'] == 'train':
if not safe_exists(config.opt['train']['net_ckpt_dir'] + '/pretrained') \
and not safe_exists(config.opt['train']['pretrained_dir'])\
and not safe_exists(config.opt['train']['prev_ckpt']):
trainer.pretrain()
trainer.train()
elif config.opt['mode'] == 'test':
trainer.test()
else:
raise NotImplementedError('Invalid running mode!')
|