Spaces:
Sleeping
Sleeping
File size: 23,122 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import platform
from turtle import left, right
from networkx import full_join
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pytorch3d.ops
import pytorch3d.transforms
import cv2 as cv
import AnimatableGaussians.config as config
from AnimatableGaussians.network.styleunet.dual_styleunet import DualStyleUNet
from AnimatableGaussians.gaussians.gaussian_model import GaussianModel
from AnimatableGaussians.gaussians.gaussian_renderer import render3
class AvatarNet(nn.Module):
def __init__(self, opt):
super(AvatarNet, self).__init__()
self.opt = opt
self.random_style = opt.get('random_style', False)
self.with_viewdirs = opt.get('with_viewdirs', True)
# init canonical gausssian model
self.max_sh_degree = 0
self.cano_gaussian_model = GaussianModel(sh_degree = self.max_sh_degree)
cano_smpl_map = cv.imread(config.opt['train']['data']['data_dir'] + '/smpl_pos_map/cano_smpl_pos_map.exr', cv.IMREAD_UNCHANGED)
self.cano_smpl_map = torch.from_numpy(cano_smpl_map).to(torch.float32).to(config.device)
self.cano_smpl_mask = torch.linalg.norm(self.cano_smpl_map, dim = -1) > 0.
self.init_points = self.cano_smpl_map[self.cano_smpl_mask]
self.lbs = torch.from_numpy(np.load(config.opt['train']['data']['data_dir'] + '/smpl_pos_map/init_pts_lbs.npy')).to(torch.float32).to(config.device)
self.cano_gaussian_model.create_from_pcd(self.init_points, torch.rand_like(self.init_points), spatial_lr_scale = 2.5)
self.color_net = DualStyleUNet(inp_size = 512, inp_ch = 3, out_ch = 3, out_size = 1024, style_dim = 512, n_mlp = 2)
self.position_net = DualStyleUNet(inp_size = 512, inp_ch = 3, out_ch = 3, out_size = 1024, style_dim = 512, n_mlp = 2)
self.other_net = DualStyleUNet(inp_size = 512, inp_ch = 3, out_ch = 8, out_size = 1024, style_dim = 512, n_mlp = 2)
self.color_style = torch.ones([1, self.color_net.style_dim], dtype=torch.float32, device=config.device) / np.sqrt(self.color_net.style_dim)
self.position_style = torch.ones([1, self.position_net.style_dim], dtype=torch.float32, device=config.device) / np.sqrt(self.position_net.style_dim)
self.other_style = torch.ones([1, self.other_net.style_dim], dtype=torch.float32, device=config.device) / np.sqrt(self.other_net.style_dim)
if self.with_viewdirs:
cano_nml_map = cv.imread(config.opt['train']['data']['data_dir'] + '/smpl_pos_map/cano_smpl_nml_map.exr', cv.IMREAD_UNCHANGED)
self.cano_nml_map = torch.from_numpy(cano_nml_map).to(torch.float32).to(config.device)
self.cano_nmls = self.cano_nml_map[self.cano_smpl_mask]
self.viewdir_net = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(64, 128, 4, 2, 1)
)
def generate_mean_hands(self):
# print('# Generating mean hands ...')
import glob
# get hand mask
lbs_argmax = self.lbs.argmax(1)
self.hand_mask = lbs_argmax == 20
self.hand_mask = torch.logical_or(self.hand_mask, lbs_argmax == 21)
self.hand_mask = torch.logical_or(self.hand_mask, lbs_argmax >= 25)
pose_map_paths = sorted(glob.glob(config.opt['train']['data']['data_dir'] + '/smpl_pos_map/%08d.exr' % config.opt['test']['fix_hand_id']))
smpl_pos_map = cv.imread(pose_map_paths[0], cv.IMREAD_UNCHANGED)
pos_map_size = smpl_pos_map.shape[1] // 2
smpl_pos_map = np.concatenate([smpl_pos_map[:, :pos_map_size], smpl_pos_map[:, pos_map_size:]], 2)
smpl_pos_map = smpl_pos_map.transpose((2, 0, 1))
pose_map = torch.from_numpy(smpl_pos_map).to(torch.float32).to(config.device)
pose_map = pose_map[:3]
cano_pts = self.get_positions(pose_map)
opacity, scales, rotations = self.get_others(pose_map)
colors, color_map = self.get_colors(pose_map)
self.hand_positions = cano_pts#[self.hand_mask]
self.hand_opacity = opacity#[self.hand_mask]
self.hand_scales = scales#[self.hand_mask]
self.hand_rotations = rotations#[self.hand_mask]
self.hand_colors = colors#[self.hand_mask]
# # debug
# hand_pts = trimesh.PointCloud(self.hand_positions.detach().cpu().numpy())
# hand_pts.export('./debug/hand_template.obj')
# exit(1)
def transform_cano2live(self, gaussian_vals, items):
pt_mats = torch.einsum('nj,jxy->nxy', self.lbs, items['cano2live_jnt_mats'])
gaussian_vals['positions'] = torch.einsum('nxy,ny->nx', pt_mats[..., :3, :3], gaussian_vals['positions']) + pt_mats[..., :3, 3]
rot_mats = pytorch3d.transforms.quaternion_to_matrix(gaussian_vals['rotations'])
rot_mats = torch.einsum('nxy,nyz->nxz', pt_mats[..., :3, :3], rot_mats)
gaussian_vals['rotations'] = pytorch3d.transforms.matrix_to_quaternion(rot_mats)
return gaussian_vals
def get_positions(self, pose_map, return_map = False):
position_map, _ = self.position_net([self.position_style], pose_map[None], randomize_noise = False)
front_position_map, back_position_map = torch.split(position_map, [3, 3], 1)
position_map = torch.cat([front_position_map, back_position_map], 3)[0].permute(1, 2, 0)
delta_position = 0.05 * position_map[self.cano_smpl_mask]
# delta_position = position_map[self.cano_smpl_mask]
positions = delta_position + self.cano_gaussian_model.get_xyz
if return_map:
return positions, position_map
else:
return positions
def get_others(self, pose_map):
other_map, _ = self.other_net([self.other_style], pose_map[None], randomize_noise = False)
front_map, back_map = torch.split(other_map, [8, 8], 1)
other_map = torch.cat([front_map, back_map], 3)[0].permute(1, 2, 0)
others = other_map[self.cano_smpl_mask] # (N, 8)
opacity, scales, rotations = torch.split(others, [1, 3, 4], 1)
opacity = self.cano_gaussian_model.opacity_activation(opacity + self.cano_gaussian_model.get_opacity_raw)
scales = self.cano_gaussian_model.scaling_activation(scales + self.cano_gaussian_model.get_scaling_raw)
rotations = self.cano_gaussian_model.rotation_activation(rotations + self.cano_gaussian_model.get_rotation_raw)
return opacity, scales, rotations
def get_colors(self, pose_map, front_viewdirs = None, back_viewdirs = None):
color_style = torch.rand_like(self.color_style) if self.random_style and self.training else self.color_style
color_map, _ = self.color_net([color_style], pose_map[None], randomize_noise = False, view_feature1 = front_viewdirs, view_feature2 = back_viewdirs)
front_color_map, back_color_map = torch.split(color_map, [3, 3], 1)
color_map = torch.cat([front_color_map, back_color_map], 3)[0].permute(1, 2, 0)
colors = color_map[self.cano_smpl_mask]
return colors, color_map
def get_viewdir_feat(self, items):
with torch.no_grad():
pt_mats = torch.einsum('nj,jxy->nxy', self.lbs, items['cano2live_jnt_mats'])
live_pts = torch.einsum('nxy,ny->nx', pt_mats[..., :3, :3], self.init_points) + pt_mats[..., :3, 3]
live_nmls = torch.einsum('nxy,ny->nx', pt_mats[..., :3, :3], self.cano_nmls)
cam_pos = -torch.matmul(torch.linalg.inv(items['extr'][:3, :3]), items['extr'][:3, 3])
viewdirs = F.normalize(cam_pos[None] - live_pts, dim = -1, eps = 1e-3)
if self.training:
viewdirs += torch.randn(*viewdirs.shape).to(viewdirs) * 0.1
viewdirs = F.normalize(viewdirs, dim = -1, eps = 1e-3)
viewdirs = (live_nmls * viewdirs).sum(-1)
viewdirs_map = torch.zeros(*self.cano_nml_map.shape[:2]).to(viewdirs)
viewdirs_map[self.cano_smpl_mask] = viewdirs
viewdirs_map = viewdirs_map[None, None]
viewdirs_map = F.interpolate(viewdirs_map, None, 0.5, 'nearest')
front_viewdirs, back_viewdirs = torch.split(viewdirs_map, [512, 512], -1)
front_viewdirs = self.opt.get('weight_viewdirs', 1.) * self.viewdir_net(front_viewdirs)
back_viewdirs = self.opt.get('weight_viewdirs', 1.) * self.viewdir_net(back_viewdirs)
return front_viewdirs, back_viewdirs
def get_pose_map(self, items):
pt_mats = torch.einsum('nj,jxy->nxy', self.lbs, items['cano2live_jnt_mats_woRoot'])
live_pts = torch.einsum('nxy,ny->nx', pt_mats[..., :3, :3], self.init_points) + pt_mats[..., :3, 3]
live_pos_map = torch.zeros_like(self.cano_smpl_map)
live_pos_map[self.cano_smpl_mask] = live_pts
live_pos_map = F.interpolate(live_pos_map.permute(2, 0, 1)[None], None, [0.5, 0.5], mode = 'nearest')[0]
live_pos_map = torch.cat(torch.split(live_pos_map, [512, 512], 2), 0)
items.update({
'smpl_pos_map': live_pos_map
})
return live_pos_map
def render(self, items, bg_color = (0., 0., 0.), use_pca = False, use_vae = False):
"""
Note that no batch index in items.
"""
bg_color = torch.from_numpy(np.asarray(bg_color)).to(torch.float32).to(config.device)
pose_map = items['smpl_pos_map'][:3]
assert not (use_pca and use_vae), "Cannot use both PCA and VAE!"
if use_pca:
pose_map = items['smpl_pos_map_pca'][:3]
if use_vae:
pose_map = items['smpl_pos_map_vae'][:3]
cano_pts, pos_map = self.get_positions(pose_map, return_map = True)
opacity, scales, rotations = self.get_others(pose_map)
# if not self.training:
# scales = torch.clip(scales, 0., 0.03)
if self.with_viewdirs:
front_viewdirs, back_viewdirs = self.get_viewdir_feat(items)
else:
front_viewdirs, back_viewdirs = None, None
colors, color_map = self.get_colors(pose_map, front_viewdirs, back_viewdirs)
if not self.training and config.opt['test'].get('fix_hand', False) and config.opt['mode'] == 'test':
# print('# fuse hands ...')
import ipdb
import AnimatableGaussians.utils.geo_util as geo_util
cano_xyz = self.init_points
wl = torch.sigmoid(2.5 * (geo_util.normalize_vert_bbox(items['left_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] + 2.0))
wr = torch.sigmoid(-2.5 * (geo_util.normalize_vert_bbox(items['right_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] - 2.0))
wl[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
wr[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
s = torch.maximum(wl + wr, torch.ones_like(wl))
wl, wr = wl / s, wr / s
w = wl + wr
# ipdb.set_trace()
cano_pts = w * self.hand_positions + (1.0 - w) * cano_pts
# new_opacity = torch.zeros_like(opacity)
opacity = w * self.hand_opacity + (1.0 - w) * opacity
# opacity = w * self.hand_opacity * 0 + (1.0 - w) * opacity
# opacity = opacity * 0
scales = w * self.hand_scales + (1.0 - w) * scales
rotations = w * self.hand_rotations + (1.0 - w) * rotations
# colors = w * self.hand_colors + (1.0 - w) * colors
# new_hand_colors = torch.ones_like(colors) * 0.5
# colors = w * new_hand_colors + (1.0 - w) * colors
gaussian_vals = {
'positions': cano_pts,
'opacity': opacity,
'scales': scales,
'rotations': rotations,
'colors': colors,
'max_sh_degree': self.max_sh_degree
}
# ipdb.set_trace()
nonrigid_offset = gaussian_vals['positions'] - self.init_points
gaussian_vals = self.transform_cano2live(gaussian_vals, items)
render_ret = render3(
gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
rgb_map = render_ret['render'].permute(1, 2, 0)
mask_map = render_ret['mask'].permute(1, 2, 0)
torso_flag = 1 - (self.lbs[:, 12] + self.lbs[:, 15] + self.lbs[:, 22] + self.lbs[:, 23] + self.lbs[:, 24])
torso_weight = torch.stack([torso_flag, torso_flag, torso_flag], dim=-1)
orig_color, gaussian_vals['colors'] = gaussian_vals['colors'], torso_weight
render_ret = render3(
gaussian_vals,
torch.zeros_like(bg_color),
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
torso_map = render_ret['render'].permute(1, 2, 0)
gaussian_vals['colors'] = orig_color
ret = {
'rgb_map': rgb_map,
'torso_map': torso_map,
'mask_map': mask_map,
'offset': nonrigid_offset,
'pos_map': pos_map
}
if not self.training:
ret.update({
'cano_tex_map': color_map,
'posed_gaussians': gaussian_vals
})
return ret
def render_wo_hand(self, items, bg_color = (0., 0., 0.), use_pca = False, use_vae = False):
"""
Note that no batch index in items.
"""
bg_color = torch.from_numpy(np.asarray(bg_color)).to(torch.float32).to(config.device)
pose_map = items['smpl_pos_map'][:3]
assert not (use_pca and use_vae), "Cannot use both PCA and VAE!"
if use_pca:
pose_map = items['smpl_pos_map_pca'][:3]
if use_vae:
pose_map = items['smpl_pos_map_vae'][:3]
cano_pts, pos_map = self.get_positions(pose_map, return_map = True)
opacity, scales, rotations = self.get_others(pose_map)
# if not self.training:
# scales = torch.clip(scales, 0., 0.03)
if self.with_viewdirs:
front_viewdirs, back_viewdirs = self.get_viewdir_feat(items)
else:
front_viewdirs, back_viewdirs = None, None
colors, color_map = self.get_colors(pose_map, front_viewdirs, back_viewdirs)
if not self.training and config.opt['test'].get('fix_hand', False) and config.opt['mode'] == 'test':
import AnimatableGaussians.utils.geo_util as geo_util
cano_xyz = self.init_points
wl = torch.sigmoid(2.5 * (geo_util.normalize_vert_bbox(items['left_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] + 2.0))
wr = torch.sigmoid(-2.5 * (geo_util.normalize_vert_bbox(items['right_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] - 2.0))
wl[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
wr[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
s = torch.maximum(wl + wr, torch.ones_like(wl))
wl, wr = wl / s, wr / s
w = wl + wr
# ipdb.set_trace()
cano_pts = w * self.hand_positions + (1.0 - w) * cano_pts
# new_opacity = torch.zeros_like(opacity)
# opacity = w * self.hand_opacity + (1.0 - w) * opacity
opacity = w * self.hand_opacity * 0 + (1.0 - w) * opacity
# opacity = opacity * 0
scales = w * self.hand_scales + (1.0 - w) * scales
rotations = w * self.hand_rotations + (1.0 - w) * rotations
# colors = w * self.hand_colors + (1.0 - w) * colors
# new_hand_colors = torch.ones_like(colors) * 0.5
# colors = w * new_hand_colors + (1.0 - w) * colors
gaussian_vals = {
'positions': cano_pts,
'opacity': opacity,
'scales': scales,
'rotations': rotations,
'colors': colors,
'max_sh_degree': self.max_sh_degree
}
# ipdb.set_trace()
nonrigid_offset = gaussian_vals['positions'] - self.init_points
gaussian_vals = self.transform_cano2live(gaussian_vals, items)
render_ret = render3(
gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
rgb_map = render_ret['render'].permute(1, 2, 0)
ret = {
'rgb_map': rgb_map,
}
return ret
def render_mask(self, items, bg_color = (0., 0., 0.), use_pca = False, use_vae = False):
"""
Note that no batch index in items.
"""
bg_color = torch.from_numpy(np.asarray(bg_color)).to(torch.float32).to(config.device)
pose_map = items['smpl_pos_map'][:3]
assert not (use_pca and use_vae), "Cannot use both PCA and VAE!"
if use_pca:
pose_map = items['smpl_pos_map_pca'][:3]
if use_vae:
pose_map = items['smpl_pos_map_vae'][:3]
cano_pts, pos_map = self.get_positions(pose_map, return_map = True)
opacity, scales, rotations = self.get_others(pose_map)
# if not self.training:
# scales = torch.clip(scales, 0., 0.03)
if self.with_viewdirs:
front_viewdirs, back_viewdirs = self.get_viewdir_feat(items)
else:
front_viewdirs, back_viewdirs = None, None
colors, color_map = self.get_colors(pose_map, front_viewdirs, back_viewdirs)
if not self.training and config.opt['test'].get('fix_hand', False) and config.opt['mode'] == 'test':
# print('# fuse hands ...')
import ipdb
import AnimatableGaussians.utils.geo_util as geo_util
cano_xyz = self.init_points
wl = torch.sigmoid(2.5 * (geo_util.normalize_vert_bbox(items['left_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] + 2.0))
wr = torch.sigmoid(-2.5 * (geo_util.normalize_vert_bbox(items['right_cano_mano_v'], attris = cano_xyz, dim = 0, per_axis = True)[..., 0:1] - 2.0))
wl[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
wr[cano_xyz[..., 1] < items['cano_smpl_center'][1]] = 0.
s = torch.maximum(wl + wr, torch.ones_like(wl))
wl, wr = wl / s, wr / s
w = wl + wr
# ipdb.set_trace()
cano_pts = w * self.hand_positions + (1.0 - w) * cano_pts
# opacity = w * self.hand_opacity + (1.0 - w) * opacity
body_opacity = torch.zeros_like(opacity)
no_body_opacity = w * self.hand_opacity * 0 + (1.0 - w) * body_opacity
only_hand_opacity = w * self.hand_opacity + (1.0 - w) * body_opacity
left_hand_opacity = wl * self.hand_opacity + (1.0 - wl) * body_opacity
right_hand_opacity = wr * self.hand_opacity + (1.0 - wr) * body_opacity
opacity = w * self.hand_opacity + (1.0 - w) * opacity
# opacity = opacity * 0
scales = w * self.hand_scales + (1.0 - w) * scales
rotations = w * self.hand_rotations + (1.0 - w) * rotations
# colors = w * self.hand_colors + (1.0 - w) * colors
r_hand_color = torch.ones_like(colors) * torch.tensor([1., 0., 0.]).to(config.device)
l_hand_color = torch.ones_like(colors) * torch.tensor([0., 0., 1.]).to(config.device)
body_color = torch.ones_like(colors) * torch.tensor([0, 1, 0]).to(config.device)
full_colors = wr * r_hand_color + wl * l_hand_color + (1.0 - w) * body_color
full_gaussian_vals = {
'positions': cano_pts,
'opacity': opacity,
'scales': scales,
'rotations': rotations,
'colors': full_colors,
'max_sh_degree': self.max_sh_degree
}
hand_only_gaussian_vals = {
'positions': cano_pts,
'opacity': only_hand_opacity,
'scales': scales,
'rotations': rotations,
'colors': full_colors,
'max_sh_degree': self.max_sh_degree
}
left_hand_gaussian_vals = {
'positions': cano_pts,
'opacity': left_hand_opacity,
'scales': scales,
'rotations': rotations,
'colors': l_hand_color,
'max_sh_degree': self.max_sh_degree
}
right_hand_gaussian_vals = {
'positions': cano_pts,
'opacity': right_hand_opacity,
'scales': scales,
'rotations': rotations,
'colors': r_hand_color,
'max_sh_degree': self.max_sh_degree
}
full_gaussian_vals = self.transform_cano2live(full_gaussian_vals, items)
hand_only_gaussian_vals = self.transform_cano2live(hand_only_gaussian_vals, items)
left_hand_gaussian_vals = self.transform_cano2live(left_hand_gaussian_vals, items)
right_hand_gaussian_vals = self.transform_cano2live(right_hand_gaussian_vals, items)
full_render_ret = render3(
full_gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
hand_only_render_ret = render3(
hand_only_gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
left_hand_render_ret = render3(
left_hand_gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
right_hand_render_ret = render3(
right_hand_gaussian_vals,
bg_color,
items['extr'],
items['intr'],
items['img_w'],
items['img_h']
)
full_rgb_map = full_render_ret['render'].permute(1, 2, 0)
hand_only_rgb_map = hand_only_render_ret['render'].permute(1, 2, 0)
left_hand_rgb_map = left_hand_render_ret['render'].permute(1, 2, 0)
right_hand_rgb_map = right_hand_render_ret['render'].permute(1, 2, 0)
ret = {
'full_body_rgb_map': full_rgb_map,
'hand_only_rgb_map': hand_only_rgb_map,
'left_hand_rgb_map': left_hand_rgb_map,
'right_hand_rgb_map': right_hand_rgb_map,
}
return ret
|