File size: 5,882 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import numpy as np
import torch
import torch.nn.functional as F

import config


def compute_gradient_volume(weight_volume, voxel_size):
    """

    :param weight_volume: (C, X, Y, Z)

    """
    sobel_x = torch.zeros((3, 3, 3), dtype = torch.float32, device = config.device)
    sobel_x[0] = torch.tensor([[-1,-2,-1], [-2,-4,-2], [-1,-2,-1]], dtype = torch.float32)
    sobel_x[2] = -sobel_x[0]
    sobel_z = sobel_x.permute((1, 2, 0))
    sobel_y = sobel_x.permute((2, 0, 1))

    # normalize
    sobel_x = sobel_x / (16 * 2 * voxel_size[0])
    sobel_y = sobel_y / (16 * 2 * voxel_size[1])
    sobel_z = sobel_z / (16 * 2 * voxel_size[2])

    # sobel_x = torch.zeros((3, 3, 3), dtype = torch.float32, device = config.device)
    # sobel_x[0] = torch.tensor([[0, 0, 0], [0, -1, 0], [0, 0, 0]], dtype = torch.float32)
    # sobel_x[2] = -sobel_x[0]
    # sobel_z = sobel_x.permute((1, 2, 0))
    # sobel_y = sobel_x.permute((2, 0, 1))
    #
    # # normalize
    # sobel_x = sobel_x / (2 * voxel_size[0])
    # sobel_y = sobel_y / (2 * voxel_size[1])
    # sobel_z = sobel_z / (2 * voxel_size[2])

    sobel_filter = torch.cat((sobel_x.unsqueeze(0), sobel_y.unsqueeze(0), sobel_z.unsqueeze(0)), dim = 0)
    sobel_filter = sobel_filter.unsqueeze(1)

    grad_volume = F.conv3d(input = weight_volume.unsqueeze(1), weight = sobel_filter, padding = 1)
    return grad_volume  # [J, 3, X, Y, Z]


class CanoBlendWeightVolume:
    def __init__(self, data_path):
        if not os.path.exists(data_path):
            raise FileNotFoundError('# CanoBlendWeightVolume is not found from %s' % data_path)
        data = np.load(data_path)

        diff_weight_volume = data['diff_weight_volume']
        diff_weight_volume = diff_weight_volume.transpose((3, 0, 1, 2))[None]
        # base_weight_volume = base_weight_volume.transpose((3, 2, 1, 0))[None]
        self.diff_weight_volume = torch.from_numpy(diff_weight_volume).to(torch.float32).to(config.device)
        self.res_x, self.res_y, self.res_z = self.diff_weight_volume.shape[2:]
        self.joint_num = self.diff_weight_volume.shape[1]

        self.ori_weight_volume = torch.from_numpy(data['ori_weight_volume'].transpose((3, 0, 1, 2))[None]).to(torch.float32).to(config.device)

        if 'sdf_volume' in data:
            smpl_sdf_volume = data['sdf_volume']
            if len(smpl_sdf_volume.shape) == 3:
                smpl_sdf_volume = smpl_sdf_volume[..., None]
            smpl_sdf_volume = smpl_sdf_volume.transpose((3, 0, 1, 2))[None]
            self.smpl_sdf_volume = torch.from_numpy(smpl_sdf_volume).to(torch.float32).to(config.device)

        self.volume_bounds = torch.from_numpy(data['volume_bounds']).to(torch.float32).to(config.device)
        self.center = torch.from_numpy(data['center']).to(torch.float32).to(config.device)
        self.smpl_bounds = torch.from_numpy(data['smpl_bounds']).to(torch.float32).to(config.device)

        volume_len = self.volume_bounds[1] - self.volume_bounds[0]
        self.voxel_size = volume_len / torch.tensor([self.res_x-1, self.res_y-1, self.res_z-1]).to(volume_len)
        # self.base_gradient_volume = compute_gradient_volume(self.diff_weight_volume[0], self.voxel_size)  # [joint_num, 3, X, Y, Z]

    def forward_weight(self, pts, requires_scale = True, volume_type = 'diff'):
        """

        :param pts: (B, N, 3)

        :param requires_scale: bool, scale pts to [0, 1]

        :return: (B, N, 24)

        """
        if requires_scale:
            pts = (pts - self.volume_bounds[None, None, 0]) / (self.volume_bounds[1] - self.volume_bounds[0])[None, None]
        B, N, _ = pts.shape
        grid = 2 * pts - 1
        grid = grid[..., [2, 1, 0]]
        grid = grid[:, :, None, None]

        weight_volume = self.diff_weight_volume if volume_type == 'diff' else self.ori_weight_volume

        base_w = F.grid_sample(weight_volume.expand(B, -1, -1, -1, -1),
                               grid,
                               mode = 'bilinear',
                               padding_mode = 'border',
                               align_corners = True)
        base_w = base_w[:, :, :, 0, 0].permute(0, 2, 1)
        return base_w

    def forward_weight_grad(self, pts, requires_scale = True):
        """

        :param pts: (B, N, 3)

        :param requires_scale: bool, scale pts to [0, 1]

        :return: (B, N, 24)

        """
        if requires_scale:
            pts = (pts - self.volume_bounds[None, None, 0]) / (self.volume_bounds[1] - self.volume_bounds[0])[None, None]
        B, N, _ = pts.shape
        grid = 2 * pts - 1
        grid = grid.reshape(-1, 3)[:, [2, 1, 0]]
        grid = grid[None, :, None, None]

        base_g = F.grid_sample(self.base_gradient_volume.view(self.joint_num * 3, self.res_x, self.res_y, self.res_z)[None].expand(B, -1, -1, -1, -1),
                               grid,
                               mode = 'nearest',
                               padding_mode = 'border',
                               align_corners = True)
        base_g = base_g[:, :, :, 0, 0].permute(0, 2, 1).reshape(B, N, -1, 3)
        return base_g

    def forward_sdf(self, pts, requires_scale = True):
        if requires_scale:
            pts = (pts - self.volume_bounds[None, None, 0]) / (self.volume_bounds[1] - self.volume_bounds[0])[None, None]
        B, N, _ = pts.shape
        grid = 2 * pts - 1
        grid = grid.reshape(-1, 3)[:, [2, 1, 0]]
        grid = grid[None, :, None, None]

        sdf = F.grid_sample(self.smpl_sdf_volume.expand(B, -1, -1, -1, -1),
                            grid,
                            padding_mode = 'border',
                            align_corners = True)
        sdf = sdf[:, :, :, 0, 0].permute(0, 2, 1)

        return sdf