File size: 14,356 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

from typing import Tuple, List
import numpy as np

import torch
import torch.nn.functional as F

from .utils import rot_mat_to_euler, Tensor


def find_dynamic_lmk_idx_and_bcoords(

    vertices: Tensor,

    pose: Tensor,

    dynamic_lmk_faces_idx: Tensor,

    dynamic_lmk_b_coords: Tensor,

    neck_kin_chain: List[int],

    pose2rot: bool = True,

) -> Tuple[Tensor, Tensor]:
    ''' Compute the faces, barycentric coordinates for the dynamic landmarks





        To do so, we first compute the rotation of the neck around the y-axis

        and then use a pre-computed look-up table to find the faces and the

        barycentric coordinates that will be used.



        Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de)

        for providing the original TensorFlow implementation and for the LUT.



        Parameters

        ----------

        vertices: torch.tensor BxVx3, dtype = torch.float32

            The tensor of input vertices

        pose: torch.tensor Bx(Jx3), dtype = torch.float32

            The current pose of the body model

        dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long

            The look-up table from neck rotation to faces

        dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32

            The look-up table from neck rotation to barycentric coordinates

        neck_kin_chain: list

            A python list that contains the indices of the joints that form the

            kinematic chain of the neck.

        dtype: torch.dtype, optional



        Returns

        -------

        dyn_lmk_faces_idx: torch.tensor, dtype = torch.long

            A tensor of size BxL that contains the indices of the faces that

            will be used to compute the current dynamic landmarks.

        dyn_lmk_b_coords: torch.tensor, dtype = torch.float32

            A tensor of size BxL that contains the indices of the faces that

            will be used to compute the current dynamic landmarks.

    '''

    dtype = vertices.dtype
    batch_size = vertices.shape[0]

    if pose2rot:
        aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
                                     neck_kin_chain)
        rot_mats = batch_rodrigues(
            aa_pose.view(-1, 3)).view(batch_size, -1, 3, 3)
    else:
        rot_mats = torch.index_select(
            pose.view(batch_size, -1, 3, 3), 1, neck_kin_chain)

    rel_rot_mat = torch.eye(
        3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat(
            batch_size, 1, 1)
    for idx in range(len(neck_kin_chain)):
        rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)

    y_rot_angle = torch.round(
        torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
                    max=39)).to(dtype=torch.long)
    neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
    mask = y_rot_angle.lt(-39).to(dtype=torch.long)
    neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
    y_rot_angle = (neg_mask * neg_vals +
                   (1 - neg_mask) * y_rot_angle)

    dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
                                           0, y_rot_angle)
    dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
                                          0, y_rot_angle)

    return dyn_lmk_faces_idx, dyn_lmk_b_coords


def vertices2landmarks(

    vertices: Tensor,

    faces: Tensor,

    lmk_faces_idx: Tensor,

    lmk_bary_coords: Tensor

) -> Tensor:
    ''' Calculates landmarks by barycentric interpolation



        Parameters

        ----------

        vertices: torch.tensor BxVx3, dtype = torch.float32

            The tensor of input vertices

        faces: torch.tensor Fx3, dtype = torch.long

            The faces of the mesh

        lmk_faces_idx: torch.tensor L, dtype = torch.long

            The tensor with the indices of the faces used to calculate the

            landmarks.

        lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32

            The tensor of barycentric coordinates that are used to interpolate

            the landmarks



        Returns

        -------

        landmarks: torch.tensor BxLx3, dtype = torch.float32

            The coordinates of the landmarks for each mesh in the batch

    '''
    # Extract the indices of the vertices for each face
    # BxLx3
    batch_size, num_verts = vertices.shape[:2]
    device = vertices.device

    lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
        batch_size, -1, 3)

    lmk_faces += torch.arange(
        batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts

    lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(
        batch_size, -1, 3, 3)

    landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
    return landmarks


def lbs(

    betas: Tensor,

    pose: Tensor,

    v_template: Tensor,

    shapedirs: Tensor,

    posedirs: Tensor,

    J_regressor: Tensor,

    parents: Tensor,

    lbs_weights: Tensor,

    pose2rot: bool = True,

    return_affine_mat = False,

) -> Tuple[Tensor, Tensor]:
    ''' Performs Linear Blend Skinning with the given shape and pose parameters



        Parameters

        ----------

        betas : torch.tensor BxNB

            The tensor of shape parameters

        pose : torch.tensor Bx(J + 1) * 3

            The pose parameters in axis-angle format

        v_template torch.tensor BxVx3

            The template mesh that will be deformed

        shapedirs : torch.tensor 1xNB

            The tensor of PCA shape displacements

        posedirs : torch.tensor Px(V * 3)

            The pose PCA coefficients

        J_regressor : torch.tensor JxV

            The regressor array that is used to calculate the joints from

            the position of the vertices

        parents: torch.tensor J

            The array that describes the kinematic tree for the model

        lbs_weights: torch.tensor N x V x (J + 1)

            The linear blend skinning weights that represent how much the

            rotation matrix of each part affects each vertex

        pose2rot: bool, optional

            Flag on whether to convert the input pose tensor to rotation

            matrices. The default value is True. If False, then the pose tensor

            should already contain rotation matrices and have a size of

            Bx(J + 1)x9

        dtype: torch.dtype, optional



        Returns

        -------

        verts: torch.tensor BxVx3

            The vertices of the mesh after applying the shape and pose

            displacements.

        joints: torch.tensor BxJx3

            The joints of the model

    '''

    batch_size = max(betas.shape[0], pose.shape[0])
    device, dtype = betas.device, betas.dtype

    # Add shape contribution
    v_shaped = v_template + blend_shapes(betas, shapedirs)

    # Get the joints
    # NxJx3 array
    J = vertices2joints(J_regressor, v_shaped)

    # 3. Add pose blend shapes
    # N x J x 3 x 3
    ident = torch.eye(3, dtype=dtype, device=device)
    if pose2rot:
        rot_mats = batch_rodrigues(pose.view(-1, 3)).view(
            [batch_size, -1, 3, 3])

        pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
        # (N x P) x (P, V * 3) -> N x V x 3
        pose_offsets = torch.matmul(
            pose_feature, posedirs).view(batch_size, -1, 3)
    else:
        pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident
        rot_mats = pose.view(batch_size, -1, 3, 3)

        pose_offsets = torch.matmul(pose_feature.view(batch_size, -1),
                                    posedirs).view(batch_size, -1, 3)

    v_posed = pose_offsets + v_shaped
    # 4. Get the global joint location
    J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)

    # 5. Do skinning:
    # W is N x V x (J + 1)
    W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
    # (N x V x (J + 1)) x (N x (J + 1) x 16)
    num_joints = J_regressor.shape[0]
    T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
        .view(batch_size, -1, 4, 4)

    homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
                               dtype=dtype, device=device)
    v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
    v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))

    verts = v_homo[:, :, :3, 0]

    if return_affine_mat:
        return verts, J_transformed, A
    else:
        return verts, J_transformed


def vertices2joints(J_regressor: Tensor, vertices: Tensor) -> Tensor:
    ''' Calculates the 3D joint locations from the vertices



    Parameters

    ----------

    J_regressor : torch.tensor JxV

        The regressor array that is used to calculate the joints from the

        position of the vertices

    vertices : torch.tensor BxVx3

        The tensor of mesh vertices



    Returns

    -------

    torch.tensor BxJx3

        The location of the joints

    '''

    return torch.einsum('bik,ji->bjk', [vertices, J_regressor])


def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor:
    ''' Calculates the per vertex displacement due to the blend shapes





    Parameters

    ----------

    betas : torch.tensor Bx(num_betas)

        Blend shape coefficients

    shape_disps: torch.tensor Vx3x(num_betas)

        Blend shapes



    Returns

    -------

    torch.tensor BxVx3

        The per-vertex displacement due to shape deformation

    '''

    # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l]
    # i.e. Multiply each shape displacement by its corresponding beta and
    # then sum them.
    blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps])
    return blend_shape


def batch_rodrigues(

    rot_vecs: Tensor,

    epsilon: float = 1e-8,

) -> Tensor:
    ''' Calculates the rotation matrices for a batch of rotation vectors

        Parameters

        ----------

        rot_vecs: torch.tensor Nx3

            array of N axis-angle vectors

        Returns

        -------

        R: torch.tensor Nx3x3

            The rotation matrices for the given axis-angle parameters

    '''

    batch_size = rot_vecs.shape[0]
    device, dtype = rot_vecs.device, rot_vecs.dtype

    angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
    rot_dir = rot_vecs / angle

    cos = torch.unsqueeze(torch.cos(angle), dim=1)
    sin = torch.unsqueeze(torch.sin(angle), dim=1)

    # Bx1 arrays
    rx, ry, rz = torch.split(rot_dir, 1, dim=1)
    K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)

    zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
    K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
        .view((batch_size, 3, 3))

    ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
    rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
    return rot_mat


def transform_mat(R: Tensor, t: Tensor) -> Tensor:
    ''' Creates a batch of transformation matrices

        Args:

            - R: Bx3x3 array of a batch of rotation matrices

            - t: Bx3x1 array of a batch of translation vectors

        Returns:

            - T: Bx4x4 Transformation matrix

    '''
    # No padding left or right, only add an extra row
    return torch.cat([F.pad(R, [0, 0, 0, 1]),
                      F.pad(t, [0, 0, 0, 1], value=1)], dim=2)


def batch_rigid_transform(

    rot_mats: Tensor,

    joints: Tensor,

    parents: Tensor,

    dtype=torch.float32

) -> Tensor:
    """

    Applies a batch of rigid transformations to the joints



    Parameters

    ----------

    rot_mats : torch.tensor BxNx3x3

        Tensor of rotation matrices

    joints : torch.tensor BxNx3

        Locations of joints

    parents : torch.tensor BxN

        The kinematic tree of each object

    dtype : torch.dtype, optional:

        The data type of the created tensors, the default is torch.float32



    Returns

    -------

    posed_joints : torch.tensor BxNx3

        The locations of the joints after applying the pose rotations

    rel_transforms : torch.tensor BxNx4x4

        The relative (with respect to the root joint) rigid transformations

        for all the joints

    """

    joints = torch.unsqueeze(joints, dim=-1)

    rel_joints = joints.clone()
    rel_joints[:, 1:] -= joints[:, parents[1:]]

    transforms_mat = transform_mat(
        rot_mats.reshape(-1, 3, 3),
        rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4)

    transform_chain = [transforms_mat[:, 0]]
    for i in range(1, parents.shape[0]):
        # Subtract the joint location at the rest pose
        # No need for rotation, since it's identity when at rest
        curr_res = torch.matmul(transform_chain[parents[i]],
                                transforms_mat[:, i])
        transform_chain.append(curr_res)

    transforms = torch.stack(transform_chain, dim=1)

    # The last column of the transformations contains the posed joints
    posed_joints = transforms[:, :, :3, 3]

    joints_homogen = F.pad(joints, [0, 0, 0, 1])

    rel_transforms = transforms - F.pad(
        torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
    
    return posed_joints, rel_transforms